ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanval3ap GIF version

Theorem tanval3ap 11421
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
Assertion
Ref Expression
tanval3ap ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))

Proof of Theorem tanval3ap
StepHypRef Expression
1 ax-icn 7715 . . . . . 6 i ∈ ℂ
2 simpl 108 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → 𝐴 ∈ ℂ)
3 mulcl 7747 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 410 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · 𝐴) ∈ ℂ)
5 efcl 11370 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
64, 5syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(i · 𝐴)) ∈ ℂ)
7 negicn 7963 . . . . . 6 -i ∈ ℂ
8 mulcl 7747 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
97, 2, 8sylancr 410 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (-i · 𝐴) ∈ ℂ)
10 efcl 11370 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
119, 10syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
126, 11subcld 8073 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
136, 11addcld 7785 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
14 mulcl 7747 . . . 4 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
151, 13, 14sylancr 410 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
16 2z 9082 . . . . . . . . . . 11 2 ∈ ℤ
17 efexp 11388 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
184, 16, 17sylancl 409 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
196sqvald 10421 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴))↑2) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2018, 19eqtrd 2172 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
21 mulneg1 8157 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = -(i · 𝐴))
221, 2, 21sylancr 410 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (-i · 𝐴) = -(i · 𝐴))
2322fveq2d 5425 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(-i · 𝐴)) = (exp‘-(i · 𝐴)))
2423oveq2d 5790 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))))
25 efcan 11382 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
264, 25syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
2724, 26eqtr2d 2173 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → 1 = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
2820, 27oveq12d 5792 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) + 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
296, 6, 11adddid 7790 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
3028, 29eqtr4d 2175 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) + 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3130oveq2d 5790 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
321a1i 9 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → i ∈ ℂ)
3332, 6, 13mul12d 7914 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
3431, 33eqtrd 2172 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
35 2cn 8791 . . . . . . . . 9 2 ∈ ℂ
36 mulcl 7747 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
3735, 4, 36sylancr 410 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (2 · (i · 𝐴)) ∈ ℂ)
38 efcl 11370 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ℂ → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
3937, 38syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
40 ax-1cn 7713 . . . . . . 7 1 ∈ ℂ
41 addcl 7745 . . . . . . 7 (((exp‘(2 · (i · 𝐴))) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
4239, 40, 41sylancl 409 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
43 iap0 8943 . . . . . . 7 i # 0
4443a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → i # 0)
45 simpr 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) + 1) # 0)
4632, 42, 44, 45mulap0d 8419 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) # 0)
4734, 46eqbrtrrd 3952 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) # 0)
486, 15, 47mulap0bbd 8421 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) # 0)
49 efap0 11383 . . . 4 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) # 0)
504, 49syl 14 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(i · 𝐴)) # 0)
5112, 15, 6, 48, 50divcanap5d 8577 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
5220, 27oveq12d 5792 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) − 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
536, 6, 11subdid 8176 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
5452, 53eqtr4d 2175 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) − 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))))
5554, 34oveq12d 5792 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))) = (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))))
56 cosval 11410 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
5756adantr 274 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
58 2cnd 8793 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → 2 ∈ ℂ)
5932, 13, 48mulap0bbd 8421 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) # 0)
60 2ap0 8813 . . . . . 6 2 # 0
6160a1i 9 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → 2 # 0)
6213, 58, 59, 61divap0d 8566 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) # 0)
6357, 62eqbrtrd 3950 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (cos‘𝐴) # 0)
64 tanval2ap 11420 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6563, 64syldan 280 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6651, 55, 653eqtr4rd 2183 1 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  0cc0 7620  1c1 7621  ici 7622   + caddc 7623   · cmul 7625  cmin 7933  -cneg 7934   # cap 8343   / cdiv 8432  2c2 8771  cz 9054  cexp 10292  expce 11348  cosccos 11351  tanctan 11352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357  df-tan 11358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator