ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanval3ap Unicode version

Theorem tanval3ap 11421
Description: Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
Assertion
Ref Expression
tanval3ap  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  -  1 )  /  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  +  1 ) ) ) )

Proof of Theorem tanval3ap
StepHypRef Expression
1 ax-icn 7715 . . . . . 6  |-  _i  e.  CC
2 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  A  e.  CC )
3 mulcl 7747 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
41, 2, 3sylancr 410 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  A )  e.  CC )
5 efcl 11370 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
64, 5syl 14 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
7 negicn 7963 . . . . . 6  |-  -u _i  e.  CC
8 mulcl 7747 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
97, 2, 8sylancr 410 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( -u _i  x.  A )  e.  CC )
10 efcl 11370 . . . . 5  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
119, 10syl 14 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
126, 11subcld 8073 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
136, 11addcld 7785 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
14 mulcl 7747 . . . 4  |-  ( ( _i  e.  CC  /\  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )  -> 
( _i  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  e.  CC )
151, 13, 14sylancr 410 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) )  e.  CC )
16 2z 9082 . . . . . . . . . . 11  |-  2  e.  ZZ
17 efexp 11388 . . . . . . . . . . 11  |-  ( ( ( _i  x.  A
)  e.  CC  /\  2  e.  ZZ )  ->  ( exp `  (
2  x.  ( _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A ) ) ^ 2 ) )
184, 16, 17sylancl 409 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( 2  x.  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
) ^ 2 ) )
196sqvald 10421 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
) ^ 2 )  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( _i  x.  A ) ) ) )
2018, 19eqtrd 2172 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( 2  x.  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) ) )
21 mulneg1 8157 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  -u ( _i  x.  A
) )
221, 2, 21sylancr 410 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( -u _i  x.  A )  =  -u ( _i  x.  A ) )
2322fveq2d 5425 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( -u _i  x.  A ) )  =  ( exp `  -u (
_i  x.  A )
) )
2423oveq2d 5790 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  -u ( _i  x.  A ) ) ) )
25 efcan 11382 . . . . . . . . . . 11  |-  ( ( _i  x.  A )  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  -u ( _i  x.  A ) ) )  =  1 )
264, 25syl 14 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  -u ( _i  x.  A ) ) )  =  1 )
2724, 26eqtr2d 2173 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  1  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) )
2820, 27oveq12d 5792 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =  ( ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  +  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
296, 6, 11adddid 7790 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
3028, 29eqtr4d 2175 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =  ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) )
3130oveq2d 5790 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( 2  x.  ( _i  x.  A
) ) )  +  1 ) )  =  ( _i  x.  (
( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
321a1i 9 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  _i  e.  CC )
3332, 6, 13mul12d 7914 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( _i  x.  A ) )  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
3431, 33eqtrd 2172 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( 2  x.  ( _i  x.  A
) ) )  +  1 ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
35 2cn 8791 . . . . . . . . 9  |-  2  e.  CC
36 mulcl 7747 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 2  x.  ( _i  x.  A
) )  e.  CC )
3735, 4, 36sylancr 410 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
2  x.  ( _i  x.  A ) )  e.  CC )
38 efcl 11370 . . . . . . . 8  |-  ( ( 2  x.  ( _i  x.  A ) )  e.  CC  ->  ( exp `  ( 2  x.  ( _i  x.  A
) ) )  e.  CC )
3937, 38syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( 2  x.  ( _i  x.  A
) ) )  e.  CC )
40 ax-1cn 7713 . . . . . . 7  |-  1  e.  CC
41 addcl 7745 . . . . . . 7  |-  ( ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  e.  CC )
4239, 40, 41sylancl 409 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  e.  CC )
43 iap0 8943 . . . . . . 7  |-  _i #  0
4443a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  _i #  0 )
45 simpr 109 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )
4632, 42, 44, 45mulap0d 8419 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( 2  x.  ( _i  x.  A
) ) )  +  1 ) ) #  0 )
4734, 46eqbrtrrd 3952 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) #  0 )
486, 15, 47mulap0bbd 8421 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) #  0 )
49 efap0 11383 . . . 4  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) ) #  0 )
504, 49syl 14 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( _i  x.  A ) ) #  0 )
5112, 15, 6, 48, 50divcanap5d 8577 . 2  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  (
_i  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
5220, 27oveq12d 5792 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  =  ( ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  -  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
536, 6, 11subdid 8176 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( _i  x.  A ) ) )  -  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
5452, 53eqtr4d 2175 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  =  ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) ) )
5554, 34oveq12d 5792 . 2  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( ( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  /  ( _i  x.  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) ) )  =  ( ( ( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) ) )
56 cosval 11410 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
5756adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
58 2cnd 8793 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  2  e.  CC )
5932, 13, 48mulap0bbd 8421 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) #  0 )
60 2ap0 8813 . . . . . 6  |-  2 #  0
6160a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  2 #  0 )
6213, 58, 59, 61divap0d 8566 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) #  0 )
6357, 62eqbrtrd 3950 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( cos `  A ) #  0 )
64 tanval2ap 11420 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
6563, 64syldan 280 . 2  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
6651, 55, 653eqtr4rd 2183 1  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  -  1 )  /  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621   _ici 7622    + caddc 7623    x. cmul 7625    - cmin 7933   -ucneg 7934   # cap 8343    / cdiv 8432   2c2 8771   ZZcz 9054   ^cexp 10292   expce 11348   cosccos 11351   tanctan 11352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357  df-tan 11358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator