ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetunirn GIF version

Theorem xmetunirn 12527
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))

Proof of Theorem xmetunirn
Dummy variables 𝑥 𝑦 𝑧 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6549 . . . . . . 7 𝑚 Fn (V × V)
2 xrex 9639 . . . . . . 7 * ∈ V
3 sqxpexg 4655 . . . . . . . 8 (𝑥 ∈ V → (𝑥 × 𝑥) ∈ V)
43elv 2690 . . . . . . 7 (𝑥 × 𝑥) ∈ V
5 fnovex 5804 . . . . . . 7 (( ↑𝑚 Fn (V × V) ∧ ℝ* ∈ V ∧ (𝑥 × 𝑥) ∈ V) → (ℝ*𝑚 (𝑥 × 𝑥)) ∈ V)
61, 2, 4, 5mp3an 1315 . . . . . 6 (ℝ*𝑚 (𝑥 × 𝑥)) ∈ V
76rabex 4072 . . . . 5 {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V
8 df-xmet 12157 . . . . 5 ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
97, 8fnmpti 5251 . . . 4 ∞Met Fn V
10 fnunirn 5668 . . . 4 (∞Met Fn V → (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)))
119, 10ax-mp 5 . . 3 (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))
12 id 19 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥))
13 xmetdmdm 12525 . . . . . 6 (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷)
1413fveq2d 5425 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷))
1512, 14eleqtrd 2218 . . . 4 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1615rexlimivw 2545 . . 3 (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1711, 16sylbi 120 . 2 (𝐷 ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷))
18 elex 2697 . . . . . 6 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ V)
19 dmexg 4803 . . . . . 6 (𝐷 ∈ V → dom 𝐷 ∈ V)
20 dmexg 4803 . . . . . 6 (dom 𝐷 ∈ V → dom dom 𝐷 ∈ V)
2118, 19, 203syl 17 . . . . 5 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 ∈ V)
22 fvssunirng 5436 . . . . 5 (dom dom 𝐷 ∈ V → (∞Met‘dom dom 𝐷) ⊆ ran ∞Met)
2321, 22syl 14 . . . 4 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (∞Met‘dom dom 𝐷) ⊆ ran ∞Met)
2423sseld 3096 . . 3 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met))
2524pm2.43i 49 . 2 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met)
2617, 25impbii 125 1 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {crab 2420  Vcvv 2686  wss 3071   cuni 3736   class class class wbr 3929   × cxp 4537  dom cdm 4539  ran crn 4540   Fn wfn 5118  cfv 5123  (class class class)co 5774  𝑚 cmap 6542  0cc0 7620  *cxr 7799  cle 7801   +𝑒 cxad 9557  ∞Metcxmet 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-xmet 12157
This theorem is referenced by:  isxms2  12621
  Copyright terms: Public domain W3C validator