ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpncan GIF version

Theorem xpncan 9657
Description: Extended real version of pncan 7971. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpncan ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)

Proof of Theorem xpncan
StepHypRef Expression
1 rexneg 9616 . . . 4 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
21adantl 275 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -𝑒𝐵 = -𝐵)
32oveq2d 5790 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = ((𝐴 +𝑒 𝐵) +𝑒 -𝐵))
4 renegcl 8026 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
54ad2antlr 480 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -𝐵 ∈ ℝ)
6 rexr 7814 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*)
7 renepnf 7816 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ +∞)
8 xaddmnf2 9635 . . . . . 6 ((-𝐵 ∈ ℝ* ∧ -𝐵 ≠ +∞) → (-∞ +𝑒 -𝐵) = -∞)
96, 7, 8syl2anc 408 . . . . 5 (-𝐵 ∈ ℝ → (-∞ +𝑒 -𝐵) = -∞)
105, 9syl 14 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (-∞ +𝑒 -𝐵) = -∞)
11 oveq1 5781 . . . . . 6 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
12 rexr 7814 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
13 renepnf 7816 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
14 xaddmnf2 9635 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
1512, 13, 14syl2anc 408 . . . . . . 7 (𝐵 ∈ ℝ → (-∞ +𝑒 𝐵) = -∞)
1615adantl 275 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (-∞ +𝑒 𝐵) = -∞)
1711, 16sylan9eqr 2194 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
1817oveq1d 5789 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (-∞ +𝑒 -𝐵))
19 simpr 109 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
2010, 18, 193eqtr4d 2182 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
21 simpll 518 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
22 simpr 109 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ≠ -∞)
2312ad2antlr 480 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ*)
24 renemnf 7817 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2524ad2antlr 480 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ≠ -∞)
264ad2antlr 480 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ)
2726, 6syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ*)
28 renemnf 7817 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ -∞)
2926, 28syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ≠ -∞)
30 xaddass 9655 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (-𝐵 ∈ ℝ* ∧ -𝐵 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
3121, 22, 23, 25, 27, 29, 30syl222anc 1232 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
32 simplr 519 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
3332, 26rexaddd 9640 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = (𝐵 + -𝐵))
3432recnd 7797 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℂ)
3534negidd 8066 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 + -𝐵) = 0)
3633, 35eqtrd 2172 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = 0)
3736oveq2d 5790 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = (𝐴 +𝑒 0))
38 xaddid1 9648 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
3938ad2antrr 479 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 0) = 𝐴)
4037, 39eqtrd 2172 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = 𝐴)
4131, 40eqtrd 2172 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
42 xrmnfdc 9629 . . . . . 6 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
43 exmiddc 821 . . . . . 6 (DECID 𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
4442, 43syl 14 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
45 df-ne 2309 . . . . . 6 (𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞)
4645orbi2i 751 . . . . 5 ((𝐴 = -∞ ∨ 𝐴 ≠ -∞) ↔ (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
4744, 46sylibr 133 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = -∞ ∨ 𝐴 ≠ -∞))
4847adantr 274 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴 = -∞ ∨ 𝐴 ≠ -∞))
4920, 41, 48mpjaodan 787 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
503, 49eqtrd 2172 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  (class class class)co 5774  cr 7622  0cc0 7623   + caddc 7626  +∞cpnf 7800  -∞cmnf 7801  *cxr 7802  -cneg 7937  -𝑒cxne 9559   +𝑒 cxad 9560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7805  df-mnf 7806  df-xr 7807  df-sub 7938  df-neg 7939  df-xneg 9562  df-xadd 9563
This theorem is referenced by:  xnpcan  9658  xleadd1  9661  xrmaxaddlem  11032
  Copyright terms: Public domain W3C validator