ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxaddlem GIF version

Theorem xrmaxaddlem 11029
Description: Lemma for xrmaxadd 11030. The case where 𝐴 is real. (Contributed by Jim Kingdon, 11-May-2023.)
Assertion
Ref Expression
xrmaxaddlem ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))

Proof of Theorem xrmaxaddlem
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9583 . . 3 ((𝑓 ∈ ℝ*𝑔 ∈ ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 275 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑓 ∈ ℝ*𝑔 ∈ ℝ*)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 rexr 7811 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 simp1 981 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
5 simp2 982 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6 simp3 983 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
7 xrmaxcl 11021 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
85, 6, 7syl2anc 408 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
94, 8xaddcld 9667 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
103, 9syl3an1 1249 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
11 elpri 3550 . . . . 5 (𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} → (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶)))
12 simpr 109 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 = (𝐴 +𝑒 𝐵))
13 xrmax1sup 11022 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
145, 6, 13syl2anc 408 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
15 xleadd2a 9657 . . . . . . . . 9 (((𝐵 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ*) ∧ 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < )) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
165, 8, 4, 14, 15syl31anc 1219 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
1716adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
1812, 17eqbrtrd 3950 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
19 simpr 109 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 = (𝐴 +𝑒 𝐶))
20 xrmax2sup 11023 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
215, 6, 20syl2anc 408 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
22 xleadd2a 9657 . . . . . . . . 9 (((𝐶 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ*) ∧ 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < )) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
236, 8, 4, 21, 22syl31anc 1219 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2423adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2519, 24eqbrtrd 3950 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2618, 25jaodan 786 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶))) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2711, 26sylan2 284 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
284, 5xaddcld 9667 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
2928adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
3012, 29eqeltrd 2216 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 ∈ ℝ*)
314, 6xaddcld 9667 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
3231adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
3319, 32eqeltrd 2216 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 ∈ ℝ*)
3430, 33jaodan 786 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶))) → 𝑥 ∈ ℝ*)
3511, 34sylan2 284 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → 𝑥 ∈ ℝ*)
369adantr 274 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
37 xrlenlt 7829 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*) → (𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥))
3835, 36, 37syl2anc 408 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → (𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥))
3927, 38mpbid 146 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥)
403, 39syl3anl1 1264 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥)
4133ad2ant1 1002 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4241adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐴 ∈ ℝ*)
4342adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐴 ∈ ℝ*)
44 simpl2 985 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐵 ∈ ℝ*)
4544adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐵 ∈ ℝ*)
4643, 45xaddcld 9667 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
47 prid1g 3627 . . . . 5 ((𝐴 +𝑒 𝐵) ∈ ℝ* → (𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
4846, 47syl 14 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
49 simpr 109 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝑥 +𝑒 -𝑒𝐴) < 𝐵)
50 simprl 520 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝑥 ∈ ℝ*)
5142xnegcld 9638 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 ∈ ℝ*)
5250, 51xaddcld 9667 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
5352adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
54 simpl1 984 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐴 ∈ ℝ)
5554adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐴 ∈ ℝ)
56 xltadd1 9659 . . . . . . 7 (((𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴)))
5753, 45, 55, 56syl3anc 1216 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴)))
5849, 57mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴))
59 xnpcan 9655 . . . . . . 7 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
6050, 54, 59syl2anc 408 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
6160adantr 274 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
62 xaddcom 9644 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐴 +𝑒 𝐵))
6345, 43, 62syl2anc 408 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐵 +𝑒 𝐴) = (𝐴 +𝑒 𝐵))
6458, 61, 633brtr3d 3959 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝑥 < (𝐴 +𝑒 𝐵))
65 breq2 3933 . . . . 5 (𝑦 = (𝐴 +𝑒 𝐵) → (𝑥 < 𝑦𝑥 < (𝐴 +𝑒 𝐵)))
6665rspcev 2789 . . . 4 (((𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} ∧ 𝑥 < (𝐴 +𝑒 𝐵)) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
6748, 64, 66syl2anc 408 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
6854adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐴 ∈ ℝ)
6968, 3syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐴 ∈ ℝ*)
70 simpl3 986 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐶 ∈ ℝ*)
7170adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐶 ∈ ℝ*)
7269, 71xaddcld 9667 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
73 prid2g 3628 . . . . 5 ((𝐴 +𝑒 𝐶) ∈ ℝ* → (𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
7472, 73syl 14 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
75 simpr 109 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝑥 +𝑒 -𝑒𝐴) < 𝐶)
7652adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
77 xltadd1 9659 . . . . . . 7 (((𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐶 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴)))
7876, 71, 68, 77syl3anc 1216 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐶 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴)))
7975, 78mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴))
8060adantr 274 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
81 xaddcom 9644 . . . . . 6 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 +𝑒 𝐴) = (𝐴 +𝑒 𝐶))
8271, 69, 81syl2anc 408 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐶 +𝑒 𝐴) = (𝐴 +𝑒 𝐶))
8379, 80, 823brtr3d 3959 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝑥 < (𝐴 +𝑒 𝐶))
84 breq2 3933 . . . . 5 (𝑦 = (𝐴 +𝑒 𝐶) → (𝑥 < 𝑦𝑥 < (𝐴 +𝑒 𝐶)))
8584rspcev 2789 . . . 4 (((𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} ∧ 𝑥 < (𝐴 +𝑒 𝐶)) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
8674, 83, 85syl2anc 408 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
87 simprr 521 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
8810adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
89 rexneg 9613 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
90893ad2ant1 1002 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐴 = -𝐴)
9190adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 = -𝐴)
9254renegcld 8142 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝐴 ∈ ℝ)
9391, 92eqeltrd 2216 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 ∈ ℝ)
94 xltadd1 9659 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ) → (𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴)))
9550, 88, 93, 94syl3anc 1216 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴)))
9687, 95mpbid 146 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴))
973, 8syl3an1 1249 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
9897adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
99 xaddcom 9644 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) = (sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴))
10042, 98, 99syl2anc 408 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) = (sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴))
101100oveq1d 5789 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴) = ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴))
10296, 101breqtrd 3954 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴))
103 xpncan 9654 . . . . . 6 ((sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ) → ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴) = sup({𝐵, 𝐶}, ℝ*, < ))
10498, 54, 103syl2anc 408 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴) = sup({𝐵, 𝐶}, ℝ*, < ))
105102, 104breqtrd 3954 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ))
106 xrltmaxsup 11026 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*) → ((𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ) ↔ ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶)))
10744, 70, 52, 106syl3anc 1216 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ) ↔ ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶)))
108105, 107mpbid 146 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶))
10967, 86, 108mpjaodan 787 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
1102, 10, 40, 109eqsuptid 6884 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wrex 2417  {cpr 3528   class class class wbr 3929  (class class class)co 5774  supcsup 6869  cr 7619  *cxr 7799   < clt 7800  cle 7801  -cneg 7934  -𝑒cxne 9556   +𝑒 cxad 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  xrmaxadd  11030
  Copyright terms: Public domain W3C validator