Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemstep GIF version

Theorem zsupcllemstep 10548
 Description: Lemma for zsupcl 10550. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypothesis
Ref Expression
zsupcllemstep.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
Assertion
Ref Expression
zsupcllemstep (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦,𝑧   𝑛,𝑀,𝑦   𝜑,𝑛,𝑦   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑛)   𝑀(𝑥,𝑧)

Proof of Theorem zsupcllemstep
StepHypRef Expression
1 eluzelz 8761 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
21ad3antrrr 476 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → 𝐾 ∈ ℤ)
3 nfv 1462 . . . . . . . 8 𝑦 𝐾 ∈ (ℤ𝑀)
4 nfv 1462 . . . . . . . . 9 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
5 nfcv 2223 . . . . . . . . . 10 𝑦
6 nfra1 2402 . . . . . . . . . . 11 𝑦𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦
7 nfra1 2402 . . . . . . . . . . 11 𝑦𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
86, 7nfan 1498 . . . . . . . . . 10 𝑦(∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
95, 8nfrexya 2410 . . . . . . . . 9 𝑦𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
104, 9nfim 1505 . . . . . . . 8 𝑦((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
113, 10nfan 1498 . . . . . . 7 𝑦(𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
12 nfv 1462 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
1311, 12nfan 1498 . . . . . 6 𝑦((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
14 nfv 1462 . . . . . 6 𝑦[𝐾 / 𝑛]𝜓
1513, 14nfan 1498 . . . . 5 𝑦(((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓)
16 nfcv 2223 . . . . . . . . . . 11 𝑛
1716elrabsf 2861 . . . . . . . . . 10 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑦 ∈ ℤ ∧ [𝑦 / 𝑛]𝜓))
1817simprbi 269 . . . . . . . . 9 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
19 sbsbc 2828 . . . . . . . . 9 ([𝑦 / 𝑛]𝜓[𝑦 / 𝑛]𝜓)
2018, 19sylibr 132 . . . . . . . 8 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
2120ad2antlr 473 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → [𝑦 / 𝑛]𝜓)
22 elrabi 2754 . . . . . . . . . . 11 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → 𝑦 ∈ ℤ)
23 zltp1le 8538 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
242, 22, 23syl2an 283 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
2524biimpa 290 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝐾 + 1) ≤ 𝑦)
262peano2zd 8605 . . . . . . . . . . 11 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝐾 + 1) ∈ ℤ)
27 eluz 8765 . . . . . . . . . . 11 (((𝐾 + 1) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2826, 22, 27syl2an 283 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2928adantr 270 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
3025, 29mpbird 165 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → 𝑦 ∈ (ℤ‘(𝐾 + 1)))
31 simprr 499 . . . . . . . . 9 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
3231ad3antrrr 476 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
33 nfs1v 1858 . . . . . . . . . 10 𝑛[𝑦 / 𝑛]𝜓
3433nfn 1589 . . . . . . . . 9 𝑛 ¬ [𝑦 / 𝑛]𝜓
35 sbequ12 1696 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝜓 ↔ [𝑦 / 𝑛]𝜓))
3635notbid 625 . . . . . . . . 9 (𝑛 = 𝑦 → (¬ 𝜓 ↔ ¬ [𝑦 / 𝑛]𝜓))
3734, 36rspc 2704 . . . . . . . 8 (𝑦 ∈ (ℤ‘(𝐾 + 1)) → (∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓 → ¬ [𝑦 / 𝑛]𝜓))
3830, 32, 37sylc 61 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ¬ [𝑦 / 𝑛]𝜓)
3921, 38pm2.65da 620 . . . . . 6 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → ¬ 𝐾 < 𝑦)
4039ex 113 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ 𝐾 < 𝑦))
4115, 40ralrimi 2437 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦)
422ad2antrr 472 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ ℤ)
43 simpllr 501 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → [𝐾 / 𝑛]𝜓)
4416elrabsf 2861 . . . . . . . 8 (𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝐾 ∈ ℤ ∧ [𝐾 / 𝑛]𝜓))
4542, 43, 44sylanbrc 408 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓})
46 breq2 3809 . . . . . . . 8 (𝑧 = 𝐾 → (𝑦 < 𝑧𝑦 < 𝐾))
4746rspcev 2710 . . . . . . 7 ((𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4845, 47sylancom 411 . . . . . 6 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4948exp31 356 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ ℝ → (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5015, 49ralrimi 2437 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
51 breq1 3808 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 < 𝑦𝐾 < 𝑦))
5251notbid 625 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝐾 < 𝑦))
5352ralbidv 2373 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦))
54 breq2 3809 . . . . . . . 8 (𝑥 = 𝐾 → (𝑦 < 𝑥𝑦 < 𝐾))
5554imbi1d 229 . . . . . . 7 (𝑥 = 𝐾 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5655ralbidv 2373 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5753, 56anbi12d 457 . . . . 5 (𝑥 = 𝐾 → ((∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
5857rspcev 2710 . . . 4 ((𝐾 ∈ ℤ ∧ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
592, 41, 50, 58syl12anc 1168 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
60 sbcng 2863 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6160ad2antrr 472 . . . . . . 7 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6261biimpar 291 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → [𝐾 / 𝑛] ¬ 𝜓)
63 sbcsng 3469 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6463ad3antrrr 476 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6562, 64mpbid 145 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ {𝐾} ¬ 𝜓)
66 simplrr 503 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
67 uzid 8766 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ (ℤ𝐾))
68 peano2uz 8804 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝐾) → (𝐾 + 1) ∈ (ℤ𝐾))
6967, 68syl 14 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ (ℤ𝐾))
70 fzouzsplit 9317 . . . . . . . . . 10 ((𝐾 + 1) ∈ (ℤ𝐾) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
711, 69, 703syl 17 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
72 fzosn 9343 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾..^(𝐾 + 1)) = {𝐾})
731, 72syl 14 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → (𝐾..^(𝐾 + 1)) = {𝐾})
7473uneq1d 3135 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7571, 74eqtrd 2115 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7675raleqdv 2560 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ ∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓))
77 ralunb 3163 . . . . . . 7 (∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
7876, 77syl6bb 194 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
7978ad3antrrr 476 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
8065, 66, 79mpbir2and 886 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
81 simprl 498 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → 𝜑)
82 simplr 497 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8381, 82mpand 420 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8483adantr 270 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8580, 84mpd 13 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
86 zsupcllemstep.dc . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
8786ralrimiva 2439 . . . . . 6 (𝜑 → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
8881, 87syl 14 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
89 nfsbc1v 2842 . . . . . . . 8 𝑛[𝐾 / 𝑛]𝜓
9089nfdc 1590 . . . . . . 7 𝑛DECID [𝐾 / 𝑛]𝜓
91 sbceq1a 2833 . . . . . . . 8 (𝑛 = 𝐾 → (𝜓[𝐾 / 𝑛]𝜓))
9291dcbid 782 . . . . . . 7 (𝑛 = 𝐾 → (DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9390, 92rspc 2704 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9493ad2antrr 472 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9588, 94mpd 13 . . . 4 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → DECID [𝐾 / 𝑛]𝜓)
96 exmiddc 778 . . . 4 (DECID [𝐾 / 𝑛]𝜓 → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9795, 96syl 14 . . 3 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9859, 85, 97mpjaodan 745 . 2 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
9998exp31 356 1 (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 102   ↔ wb 103   ∨ wo 662  DECID wdc 776   = wceq 1285   ∈ wcel 1434  [wsb 1687  ∀wral 2353  ∃wrex 2354  {crab 2357  [wsbc 2824   ∪ cun 2980  {csn 3416   class class class wbr 3805  ‘cfv 4952  (class class class)co 5563  ℝcr 7094  1c1 7096   + caddc 7098   < clt 7267   ≤ cle 7268  ℤcz 8484  ℤ≥cuz 8752  ..^cfzo 9281 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753  df-fz 9158  df-fzo 9282 This theorem is referenced by:  zsupcllemex  10549
 Copyright terms: Public domain W3C validator