![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0psubN | Structured version Visualization version GIF version |
Description: The empty set is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0psub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
Ref | Expression |
---|---|
0psubN | ⊢ (𝐾 ∈ 𝑉 → ∅ ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4005 | . . 3 ⊢ ∅ ⊆ (Atoms‘𝐾) | |
2 | ral0 4109 | . . 3 ⊢ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅) | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (∅ ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅)) |
4 | eqid 2651 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2651 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | eqid 2651 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
7 | 0psub.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
8 | 4, 5, 6, 7 | ispsubsp 35349 | . 2 ⊢ (𝐾 ∈ 𝑉 → (∅ ∈ 𝑆 ↔ (∅ ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅)))) |
9 | 3, 8 | mpbiri 248 | 1 ⊢ (𝐾 ∈ 𝑉 → ∅ ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 ∅c0 3948 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 lecple 15995 joincjn 16991 Atomscatm 34868 PSubSpcpsubsp 35100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-psubsp 35107 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |