![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3952 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 116 | . 2 ⊢ (𝑥 ∈ ∅ → 𝜑) |
3 | 2 | rgen 2951 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ∀wral 2941 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: int0 4522 0iin 4610 po0 5079 so0 5097 mpt0 6059 ixp0x 7978 ac6sfi 8245 sup0riota 8412 infpssrlem4 9166 axdc3lem4 9313 0tsk 9615 uzsupss 11818 xrsupsslem 12175 xrinfmsslem 12176 xrsup0 12191 fsuppmapnn0fiubex 12832 swrd0 13480 swrdspsleq 13495 repswsymballbi 13573 cshw1 13614 rexfiuz 14131 lcmf0 15394 2prm 15452 0ssc 16544 0subcat 16545 drsdirfi 16985 0pos 17001 mrelatglb0 17232 sgrp0b 17339 ga0 17777 psgnunilem3 17962 lbsexg 19212 ocv0 20069 mdetunilem9 20474 imasdsf1olem 22225 prdsxmslem2 22381 lebnumlem3 22809 cniccbdd 23276 ovolicc2lem4 23334 c1lip1 23805 ulm0 24190 istrkg2ld 25404 nbgr0vtx 26297 nbgr1vtx 26299 uvtxa01vtx0OLD 26348 prcliscplgr 26365 cplgr0 26377 cplgr1v 26382 wwlksn0s 26815 clwwlkn 26985 clwwlkn1 27004 0ewlk 27092 1ewlk 27093 0wlk 27094 0conngr 27170 frgr0v 27241 frgr0 27244 frgr1v 27251 1vwmgr 27256 chocnul 28315 locfinref 30036 esumnul 30238 derang0 31277 unt0 31714 nulsslt 32033 nulssgt 32034 fdc 33671 lub0N 34794 glb0N 34798 0psubN 35353 iso0 38823 fnchoice 39502 eliuniincex 39606 eliincex 39607 limcdm0 40168 2ffzoeq 41663 iccpartiltu 41683 iccpartigtl 41684 0mgm 42099 linds0 42579 |
Copyright terms: Public domain | W3C validator |