MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad8antr Structured version   Visualization version   GIF version

Theorem ad8antr 771
Description: Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad8antr (((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓)

Proof of Theorem ad8antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21ad7antr 769 . 2 ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)
32adantr 479 1 (((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-an 384
This theorem is referenced by:  ad9antr  773  legso  25207  miriso  25278  midexlem  25300  opphl  25359  trgcopy  25409  inaghl  25444  qtophaus  29032  afsval  29803  hoidmvle  39289  smfmullem3  39477
  Copyright terms: Public domain W3C validator