Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad8antr Structured version   Visualization version   GIF version

 Description: Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
Assertion
Ref Expression
ad8antr (((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓)

StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantr 472 . 2 ((𝜑𝜒) → 𝜓)
32ad7antr 783 1 (((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385 This theorem is referenced by:  ad9antr  791  ad9antrOLD  792  ad9antlr  793  simp-8l  841  simp-9r  847  legso  25714  miriso  25785  midexlem  25807  opphl  25866  trgcopy  25916  inaghl  25951  qtophaus  30233  afsval  31079  hoidmvle  41338  smfmullem3  41524
 Copyright terms: Public domain W3C validator