Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbsdiflsp0 Structured version   Visualization version   GIF version

Theorem lbsdiflsp0 31022
Description: The linear spans of two disjunct independent sets only have a trivial intersection. This can be seen as the opposite direction of lindsun 31021. (Contributed by Thierry Arnoux, 17-May-2023.)
Hypotheses
Ref Expression
lbsdiflsp0.j 𝐽 = (LBasis‘𝑊)
lbsdiflsp0.n 𝑁 = (LSpan‘𝑊)
lbsdiflsp0.1 0 = (0g𝑊)
Assertion
Ref Expression
lbsdiflsp0 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })

Proof of Theorem lbsdiflsp0
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 782 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))
2 fveq2 6670 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑎𝑢) = (𝑎𝑣))
3 id 22 . . . . . . . . . . . 12 (𝑢 = 𝑣𝑢 = 𝑣)
42, 3oveq12d 7174 . . . . . . . . . . 11 (𝑢 = 𝑣 → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = ((𝑎𝑣)( ·𝑠𝑊)𝑣))
54cbvmptv 5169 . . . . . . . . . 10 (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)) = (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))
65oveq2i 7167 . . . . . . . . 9 (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))
71, 6syl6eqr 2874 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))))
8 simp-4r 782 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎 finSupp (0g‘(Scalar‘𝑊)))
9 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏 finSupp (0g‘(Scalar‘𝑊)))
10 simp-8l 789 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
11 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵𝐽)
1211ad6antr 734 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝐵𝐽)
13 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉𝐵)
1413ad6antr 734 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑉𝐵)
15 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉))
16 fvexd 6685 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (Base‘(Scalar‘𝑊)) ∈ V)
1711, 13ssexd 5228 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉 ∈ V)
1816, 17elmapd 8420 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉) ↔ 𝑎:𝑉⟶(Base‘(Scalar‘𝑊))))
1918biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
2010, 12, 14, 15, 19syl1111anc 837 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
21 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)))
22 lveclmod 19878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2322ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑊 ∈ LMod)
24 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Base‘𝑊) = (Base‘𝑊)
25 lbsdiflsp0.j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐽 = (LBasis‘𝑊)
2624, 25lbsss 19849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵𝐽𝐵 ⊆ (Base‘𝑊))
2726ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵 ⊆ (Base‘𝑊))
2827ssdifssd 4119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝐵𝑉) ⊆ (Base‘𝑊))
29 lbsdiflsp0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 = (0g𝑊)
30 lbsdiflsp0.n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑁 = (LSpan‘𝑊)
3129, 24, 300ellsp 30934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ LMod ∧ (𝐵𝑉) ⊆ (Base‘𝑊)) → 0 ∈ (𝑁‘(𝐵𝑉)))
3223, 28, 31syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ (𝑁‘(𝐵𝑉)))
3332elfvexd 6704 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝐵𝑉) ∈ V)
3416, 33elmapd 8420 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)) ↔ 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊))))
3534biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
3610, 12, 14, 21, 35syl1111anc 837 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
37 disjdif 4421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉 ∩ (𝐵𝑉)) = ∅
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑉 ∩ (𝐵𝑉)) = ∅)
3920, 36, 38fun2d 6542 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏):(𝑉 ∪ (𝐵𝑉))⟶(Base‘(Scalar‘𝑊)))
40 undif 4430 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉𝐵 ↔ (𝑉 ∪ (𝐵𝑉)) = 𝐵)
4114, 40sylib 220 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
4241feq2d 6500 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → ((𝑎𝑏):(𝑉 ∪ (𝐵𝑉))⟶(Base‘(Scalar‘𝑊)) ↔ (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊))))
4339, 42mpbid 234 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊)))
4443ffund 6518 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → Fun (𝑎𝑏))
4544fsuppunbi 8854 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → ((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ↔ (𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊)))))
468, 9, 45mpbir2and 711 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)))
4746adantr 483 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)))
48 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (+g𝑊) = (+g𝑊)
49 lmodcmn 19682 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
5022, 49syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ LVec → 𝑊 ∈ CMnd)
5150ad9antr 740 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ CMnd)
5211ad7antr 736 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝐵𝐽)
5323ad8antr 738 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑊 ∈ LMod)
54 elmapfn 8429 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉) → 𝑎 Fn 𝑉)
5554ad6antlr 735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑎 Fn 𝑉)
5655adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑎 Fn 𝑉)
57 elmapfn 8429 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)) → 𝑏 Fn (𝐵𝑉))
5857ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑏 Fn (𝐵𝑉))
5958adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑏 Fn (𝐵𝑉))
6037a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑉 ∩ (𝐵𝑉)) = ∅)
61 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑢𝑉)
62 fvun1 6754 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ ((𝑉 ∩ (𝐵𝑉)) = ∅ ∧ 𝑢𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6356, 59, 60, 61, 62syl112anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6463adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6520ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
66 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → 𝑢𝑉)
6765, 66ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → (𝑎𝑢) ∈ (Base‘(Scalar‘𝑊)))
6864, 67eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
6955adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑎 Fn 𝑉)
7058adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑏 Fn (𝐵𝑉))
7137a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → (𝑉 ∩ (𝐵𝑉)) = ∅)
72 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑢 ∈ (𝐵𝑉))
73 fvun2 6755 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ ((𝑉 ∩ (𝐵𝑉)) = ∅ ∧ 𝑢 ∈ (𝐵𝑉))) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7469, 70, 71, 72, 73syl112anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7574adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7636ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
77 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑢 ∈ (𝐵𝑉))
7876, 77ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → (𝑏𝑢) ∈ (Base‘(Scalar‘𝑊)))
7975, 78eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
80 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢𝐵)
8140biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑉𝐵 → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
8281ad8antlr 739 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
8382eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝐵 = (𝑉 ∪ (𝐵𝑉)))
8483adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝐵 = (𝑉 ∪ (𝐵𝑉)))
8580, 84eleqtrd 2915 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢 ∈ (𝑉 ∪ (𝐵𝑉)))
86 elun 4125 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝑉 ∪ (𝐵𝑉)) ↔ (𝑢𝑉𝑢 ∈ (𝐵𝑉)))
8785, 86sylib 220 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → (𝑢𝑉𝑢 ∈ (𝐵𝑉)))
8868, 79, 87mpjaodan 955 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
8927ad8antr 738 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝐵 ⊆ (Base‘𝑊))
9089, 80sseldd 3968 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢 ∈ (Base‘𝑊))
91 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (Scalar‘𝑊) = (Scalar‘𝑊)
92 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 ( ·𝑠𝑊) = ( ·𝑠𝑊)
93 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9424, 91, 92, 93lmodvscl 19651 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ LMod ∧ ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑢 ∈ (Base‘𝑊)) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) ∈ (Base‘𝑊))
9553, 88, 90, 94syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) ∈ (Base‘𝑊))
96 simp-9l 791 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ LVec)
9796, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ LMod)
98 eqidd 2822 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (Scalar‘𝑊) = (Scalar‘𝑊))
99 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
10043adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊)))
101100feqmptd 6733 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) = (𝑢𝐵 ↦ ((𝑎𝑏)‘𝑢)))
102101, 47eqbrtrrd 5090 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝐵 ↦ ((𝑎𝑏)‘𝑢)) finSupp (0g‘(Scalar‘𝑊)))
10352, 97, 98, 24, 88, 90, 29, 99, 92, 102mptscmfsupp0 19699 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) finSupp 0 )
10437a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑉 ∩ (𝐵𝑉)) = ∅)
10524, 29, 48, 51, 52, 95, 103, 104, 83gsumsplit2 19049 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))))
10663oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) = ((𝑎𝑢)( ·𝑠𝑊)𝑢))
107106mpteq2dva 5161 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))
108107oveq2d 7172 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))))
10974oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) = ((𝑏𝑢)( ·𝑠𝑊)𝑢))
110109mpteq2dva 5161 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) = (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))
111110oveq2d 7172 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))))
112108, 111oveq12d 7174 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))) = ((𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))))
113 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))
114 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝑣 → (𝑏𝑢) = (𝑏𝑣))
115114, 3oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → ((𝑏𝑢)( ·𝑠𝑊)𝑢) = ((𝑏𝑣)( ·𝑠𝑊)𝑣))
116115cbvmptv 5169 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)) = (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))
117116oveq2i 7167 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))
118113, 117syl6eqr 2874 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))))
1197, 118oveq12d 7174 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = ((𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))))
120 lmodgrp 19641 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
12196, 22, 1203syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ Grp)
12213, 27sstrd 3977 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉 ⊆ (Base‘𝑊))
12324, 30lspssv 19755 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LMod ∧ 𝑉 ⊆ (Base‘𝑊)) → (𝑁𝑉) ⊆ (Base‘𝑊))
12423, 122, 123syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑁𝑉) ⊆ (Base‘𝑊))
125124ad7antr 736 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑁𝑉) ⊆ (Base‘𝑊))
126 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)))
127126elin2d 4176 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ (𝑁𝑉))
128127ad6antr 734 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 ∈ (𝑁𝑉))
129125, 128sseldd 3968 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 ∈ (Base‘𝑊))
130 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (invg𝑊) = (invg𝑊)
13124, 48, 29, 130grprinv 18153 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = 0 )
132121, 129, 131syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = 0 )
133112, 119, 1323eqtr2d 2862 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))) = 0 )
134105, 133eqtrd 2856 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 )
135 breq1 5069 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑎𝑏) → (𝑐 finSupp (0g‘(Scalar‘𝑊)) ↔ (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊))))
136 fveq1 6669 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑎𝑏) → (𝑐𝑢) = ((𝑎𝑏)‘𝑢))
137136oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑎𝑏) → ((𝑐𝑢)( ·𝑠𝑊)𝑢) = (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))
138137mpteq2dv 5162 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑎𝑏) → (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))
139138oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = (𝑎𝑏) → (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))))
140139eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑎𝑏) → ((𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ↔ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ))
141135, 140anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑎𝑏) → ((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) ↔ ((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 )))
142 eqeq1 2825 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑎𝑏) → (𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))}) ↔ (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))})))
143141, 142imbi12d 347 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝑎𝑏) → (((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})) ↔ (((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))}))))
14425lbslinds 20977 . . . . . . . . . . . . . . . . . . . . . 22 𝐽 ⊆ (LIndS‘𝑊)
145144, 11sseldi 3965 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵 ∈ (LIndS‘𝑊))
14624, 93, 91, 92, 29, 99islinds5 30932 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ LMod ∧ 𝐵 ⊆ (Base‘𝑊)) → (𝐵 ∈ (LIndS‘𝑊) ↔ ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))}))))
147146biimpa 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LMod ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ 𝐵 ∈ (LIndS‘𝑊)) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
14823, 27, 145, 147syl21anc 835 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
149148ad7antr 736 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
150 fvexd 6685 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (Base‘(Scalar‘𝑊)) ∈ V)
151150, 52elmapd 8420 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵) ↔ (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊))))
152100, 151mpbird 259 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵))
153143, 149, 152rspcdva 3625 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))})))
15447, 134, 153mp2and 697 . . . . . . . . . . . . . . . . 17 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))}))
155154reseq1d 5852 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ↾ 𝑉) = ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉))
156 fnunres1 30356 . . . . . . . . . . . . . . . . 17 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ (𝑉 ∩ (𝐵𝑉)) = ∅) → ((𝑎𝑏) ↾ 𝑉) = 𝑎)
15755, 58, 104, 156syl3anc 1367 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ↾ 𝑉) = 𝑎)
158 xpssres 5889 . . . . . . . . . . . . . . . . 17 (𝑉𝐵 → ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉) = (𝑉 × {(0g‘(Scalar‘𝑊))}))
159158ad8antlr 739 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉) = (𝑉 × {(0g‘(Scalar‘𝑊))}))
160155, 157, 1593eqtr3d 2864 . . . . . . . . . . . . . . 15 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑎 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
161160adantr 483 . . . . . . . . . . . . . 14 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑎 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
162161fveq1d 6672 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑎𝑢) = ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢))
163 fvex 6683 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑊)) ∈ V
164163fvconst2 6966 . . . . . . . . . . . . . 14 (𝑢𝑉 → ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢) = (0g‘(Scalar‘𝑊)))
16561, 164syl 17 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢) = (0g‘(Scalar‘𝑊)))
166162, 165eqtrd 2856 . . . . . . . . . . . 12 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑎𝑢) = (0g‘(Scalar‘𝑊)))
167166oveq1d 7171 . . . . . . . . . . 11 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢))
168122ad8antr 738 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑉 ⊆ (Base‘𝑊))
169168, 61sseldd 3968 . . . . . . . . . . . 12 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑢 ∈ (Base‘𝑊))
17024, 91, 92, 99, 29lmod0vs 19667 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑢 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢) = 0 )
17197, 169, 170syl2an2r 683 . . . . . . . . . . 11 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢) = 0 )
172167, 171eqtrd 2856 . . . . . . . . . 10 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = 0 )
173172mpteq2dva 5161 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝑉0 ))
174173oveq2d 7172 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝑉0 )))
175 cmnmnd 18922 . . . . . . . . . 10 (𝑊 ∈ CMnd → 𝑊 ∈ Mnd)
17651, 175syl 17 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ Mnd)
177128elfvexd 6704 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑉 ∈ V)
17829gsumz 18000 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑊 Σg (𝑢𝑉0 )) = 0 )
179176, 177, 178syl2anc 586 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉0 )) = 0 )
1807, 174, 1793eqtrd 2860 . . . . . . 7 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = 0 )
181180anasss 469 . . . . . 6 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ (𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))) → 𝑥 = 0 )
182 eqid 2821 . . . . . . . . . . . . 13 (LSubSp‘𝑊) = (LSubSp‘𝑊)
18324, 182, 30lspcl 19748 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝐵𝑉) ⊆ (Base‘𝑊)) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
18423, 28, 183syl2anc 586 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
185184adantr 483 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
186182lsssubg 19729 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊))
18723, 185, 186syl2an2r 683 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → (𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊))
188126elin1d 4175 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ (𝑁‘(𝐵𝑉)))
189130subginvcl 18288 . . . . . . . . 9 (((𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊) ∧ 𝑥 ∈ (𝑁‘(𝐵𝑉))) → ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)))
190187, 188, 189syl2anc 586 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)))
19130, 24, 93, 91, 99, 92, 23, 28ellspds 30933 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))))
192191biimpa 479 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
193190, 192syldan 593 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
194193ad3antrrr 728 . . . . . 6 (((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
195181, 194r19.29a 3289 . . . . 5 (((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = 0 )
196195anasss 469 . . . 4 ((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ (𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))) → 𝑥 = 0 )
19730, 24, 93, 91, 99, 92, 23, 122ellspds 30933 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑥 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))))
198197biimpa 479 . . . . 5 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ (𝑁𝑉)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))))
199127, 198syldan 593 . . . 4 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))))
200196, 199r19.29a 3289 . . 3 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 = 0 )
20129, 24, 300ellsp 30934 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑉 ⊆ (Base‘𝑊)) → 0 ∈ (𝑁𝑉))
20223, 122, 201syl2anc 586 . . . 4 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ (𝑁𝑉))
20332, 202elind 4171 . . 3 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)))
204200, 203eqsnd 30289 . 2 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
2052043impa 1106 1 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567   class class class wbr 5066  cmpt 5146   × cxp 5553  cres 5557   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406   finSupp cfsupp 8833  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713   Σg cgsu 16714  Mndcmnd 17911  Grpcgrp 18103  invgcminusg 18104  SubGrpcsubg 18273  CMndccmn 18906  LModclmod 19634  LSubSpclss 19703  LSpanclspn 19743  LBasisclbs 19846  LVecclvec 19874  LIndSclinds 20949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lmhm 19794  df-lbs 19847  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-nzr 20031  df-dsmm 20876  df-frlm 20891  df-uvc 20927  df-lindf 20950  df-linds 20951
This theorem is referenced by:  dimkerim  31023
  Copyright terms: Public domain W3C validator