MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwval Structured version   Visualization version   GIF version

Theorem arwval 17298
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwval.a 𝐴 = (Arrow‘𝐶)
arwval.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwval 𝐴 = ran 𝐻

Proof of Theorem arwval
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwval.a . 2 𝐴 = (Arrow‘𝐶)
2 fveq2 6663 . . . . . . 7 (𝑐 = 𝐶 → (Homa𝑐) = (Homa𝐶))
3 arwval.h . . . . . . 7 𝐻 = (Homa𝐶)
42, 3syl6eqr 2873 . . . . . 6 (𝑐 = 𝐶 → (Homa𝑐) = 𝐻)
54rneqd 5801 . . . . 5 (𝑐 = 𝐶 → ran (Homa𝑐) = ran 𝐻)
65unieqd 4845 . . . 4 (𝑐 = 𝐶 ran (Homa𝑐) = ran 𝐻)
7 df-arw 17282 . . . 4 Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
83fvexi 6677 . . . . . 6 𝐻 ∈ V
98rnex 7610 . . . . 5 ran 𝐻 ∈ V
109uniex 7460 . . . 4 ran 𝐻 ∈ V
116, 7, 10fvmpt 6761 . . 3 (𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
127fvmptndm 6791 . . . 4 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅)
13 df-homa 17281 . . . . . . . . . 10 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
1413fvmptndm 6791 . . . . . . . . 9 𝐶 ∈ Cat → (Homa𝐶) = ∅)
153, 14syl5eq 2867 . . . . . . . 8 𝐶 ∈ Cat → 𝐻 = ∅)
1615rneqd 5801 . . . . . . 7 𝐶 ∈ Cat → ran 𝐻 = ran ∅)
17 rn0 5789 . . . . . . 7 ran ∅ = ∅
1816, 17syl6eq 2871 . . . . . 6 𝐶 ∈ Cat → ran 𝐻 = ∅)
1918unieqd 4845 . . . . 5 𝐶 ∈ Cat → ran 𝐻 = ∅)
20 uni0 4859 . . . . 5 ∅ = ∅
2119, 20syl6eq 2871 . . . 4 𝐶 ∈ Cat → ran 𝐻 = ∅)
2212, 21eqtr4d 2858 . . 3 𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
2311, 22pm2.61i 184 . 2 (Arrow‘𝐶) = ran 𝐻
241, 23eqtri 2843 1 𝐴 = ran 𝐻
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1536  wcel 2113  c0 4284  {csn 4560   cuni 4831  cmpt 5139   × cxp 5546  ran crn 5549  cfv 6348  Basecbs 16478  Hom chom 16571  Catccat 16930  Arrowcarw 17277  Homachoma 17278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fv 6356  df-homa 17281  df-arw 17282
This theorem is referenced by:  arwhoma  17300  homarw  17301
  Copyright terms: Public domain W3C validator