Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid4 Structured version   Visualization version   GIF version

Theorem bj-elid4 34463
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid4 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))

Proof of Theorem bj-elid4
StepHypRef Expression
1 1st2nd2 7728 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 eleq1 2900 . . . 4 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ I ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ))
32adantl 484 . . 3 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (𝐴 ∈ I ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ))
4 fvex 6683 . . . . 5 (2nd𝐴) ∈ V
54inex2 5222 . . . 4 ((1st𝐴) ∩ (2nd𝐴)) ∈ V
6 bj-opelid 34451 . . . 4 (((1st𝐴) ∩ (2nd𝐴)) ∈ V → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ↔ (1st𝐴) = (2nd𝐴)))
75, 6mp1i 13 . . 3 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ↔ (1st𝐴) = (2nd𝐴)))
83, 7bitrd 281 . 2 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
91, 8mpdan 685 1 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  cop 4573   I cid 5459   × cxp 5553  cfv 6355  1st c1st 7687  2nd c2nd 7688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fv 6363  df-1st 7689  df-2nd 7690
This theorem is referenced by:  bj-elid5  34464  bj-elid6  34465  bj-eldiag  34471
  Copyright terms: Public domain W3C validator