Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1148 Structured version   Visualization version   GIF version

Theorem bnj1148 31369
Description: Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1148 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)

Proof of Theorem bnj1148
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elisset 3353 . . . . 5 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21adantl 473 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥 𝑥 = 𝑋)
3 bnj93 31238 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
4 eleq1 2825 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
54anbi2d 742 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑥𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴)))
6 bnj602 31290 . . . . . . 7 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
76eleq1d 2822 . . . . . 6 (𝑥 = 𝑋 → ( pred(𝑥, 𝐴, 𝑅) ∈ V ↔ pred(𝑋, 𝐴, 𝑅) ∈ V))
85, 7imbi12d 333 . . . . 5 (𝑥 = 𝑋 → (((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)))
93, 8mpbii 223 . . . 4 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))
102, 9bnj593 31120 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))
1110bnj937 31147 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V))
1211pm2.43i 52 1 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1630  wex 1851  wcel 2137  Vcvv 3338   predc-bnj14 31061   FrSe w-bnj15 31065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ral 3053  df-rab 3057  df-v 3340  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-op 4326  df-br 4803  df-bnj14 31062  df-bnj13 31064  df-bnj15 31066
This theorem is referenced by:  bnj1136  31370  bnj1413  31408
  Copyright terms: Public domain W3C validator