Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brco2f1o Structured version   Visualization version   GIF version

Theorem brco2f1o 37839
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
Hypotheses
Ref Expression
brco2f1o.c (𝜑𝐶:𝑌1-1-onto𝑍)
brco2f1o.d (𝜑𝐷:𝑋1-1-onto𝑌)
brco2f1o.r (𝜑𝐴(𝐶𝐷)𝐵)
Assertion
Ref Expression
brco2f1o (𝜑 → ((𝐶𝐵)𝐶𝐵𝐴𝐷(𝐶𝐵)))

Proof of Theorem brco2f1o
StepHypRef Expression
1 brco2f1o.d . . . 4 (𝜑𝐷:𝑋1-1-onto𝑌)
2 f1ocnv 6111 . . . 4 (𝐷:𝑋1-1-onto𝑌𝐷:𝑌1-1-onto𝑋)
3 f1ofn 6100 . . . 4 (𝐷:𝑌1-1-onto𝑋𝐷 Fn 𝑌)
41, 2, 33syl 18 . . 3 (𝜑𝐷 Fn 𝑌)
5 brco2f1o.c . . . 4 (𝜑𝐶:𝑌1-1-onto𝑍)
6 f1ocnv 6111 . . . 4 (𝐶:𝑌1-1-onto𝑍𝐶:𝑍1-1-onto𝑌)
7 f1of 6099 . . . 4 (𝐶:𝑍1-1-onto𝑌𝐶:𝑍𝑌)
85, 6, 73syl 18 . . 3 (𝜑𝐶:𝑍𝑌)
9 brco2f1o.r . . . 4 (𝜑𝐴(𝐶𝐷)𝐵)
10 relco 5597 . . . . . 6 Rel (𝐶𝐷)
1110relbrcnv 5470 . . . . 5 (𝐵(𝐶𝐷)𝐴𝐴(𝐶𝐷)𝐵)
12 cnvco 5273 . . . . . 6 (𝐶𝐷) = (𝐷𝐶)
1312breqi 4624 . . . . 5 (𝐵(𝐶𝐷)𝐴𝐵(𝐷𝐶)𝐴)
1411, 13bitr3i 266 . . . 4 (𝐴(𝐶𝐷)𝐵𝐵(𝐷𝐶)𝐴)
159, 14sylib 208 . . 3 (𝜑𝐵(𝐷𝐶)𝐴)
164, 8, 15brcoffn 37837 . 2 (𝜑 → (𝐵𝐶(𝐶𝐵) ∧ (𝐶𝐵)𝐷𝐴))
17 f1orel 6102 . . . 4 (𝐶:𝑌1-1-onto𝑍 → Rel 𝐶)
18 relbrcnvg 5468 . . . 4 (Rel 𝐶 → (𝐵𝐶(𝐶𝐵) ↔ (𝐶𝐵)𝐶𝐵))
195, 17, 183syl 18 . . 3 (𝜑 → (𝐵𝐶(𝐶𝐵) ↔ (𝐶𝐵)𝐶𝐵))
20 f1orel 6102 . . . 4 (𝐷:𝑋1-1-onto𝑌 → Rel 𝐷)
21 relbrcnvg 5468 . . . 4 (Rel 𝐷 → ((𝐶𝐵)𝐷𝐴𝐴𝐷(𝐶𝐵)))
221, 20, 213syl 18 . . 3 (𝜑 → ((𝐶𝐵)𝐷𝐴𝐴𝐷(𝐶𝐵)))
2319, 22anbi12d 746 . 2 (𝜑 → ((𝐵𝐶(𝐶𝐵) ∧ (𝐶𝐵)𝐷𝐴) ↔ ((𝐶𝐵)𝐶𝐵𝐴𝐷(𝐶𝐵))))
2416, 23mpbid 222 1 (𝜑 → ((𝐶𝐵)𝐶𝐵𝐴𝐷(𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   class class class wbr 4618  ccnv 5078  ccom 5083  Rel wrel 5084   Fn wfn 5847  wf 5848  1-1-ontowf1o 5851  cfv 5852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator