Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relbrcnvg Structured version   Visualization version   GIF version

Theorem relbrcnvg 5492
 Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5294 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
relbrcnvg (Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem relbrcnvg
StepHypRef Expression
1 relcnv 5491 . . . 4 Rel 𝑅
2 brrelex12 5145 . . . 4 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
31, 2mpan 705 . . 3 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
43a1i 11 . 2 (Rel 𝑅 → (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
5 brrelex12 5145 . . . 4 ((Rel 𝑅𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
65ancomd 467 . . 3 ((Rel 𝑅𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76ex 450 . 2 (Rel 𝑅 → (𝐵𝑅𝐴 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
8 brcnvg 5292 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴))
98a1i 11 . 2 (Rel 𝑅 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
104, 7, 9pm5.21ndd 369 1 (Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∈ wcel 1988  Vcvv 3195   class class class wbr 4644  ◡ccnv 5103  Rel wrel 5109 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-xp 5110  df-rel 5111  df-cnv 5112 This theorem is referenced by:  eliniseg2  5493  relbrcnv  5494  isinv  16401  brco2f1o  38150  brco3f1o  38151  ntrclsnvobr  38170  neicvgel1  38237
 Copyright terms: Public domain W3C validator