MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brecop2 Structured version   Visualization version   GIF version

Theorem brecop2 8391
Description: Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996.) (Revised by AV, 12-Jul-2022.)
Hypotheses
Ref Expression
brecop2.1 dom = (𝐺 × 𝐺)
brecop2.2 𝐻 = ((𝐺 × 𝐺) / )
brecop2.3 𝑅 ⊆ (𝐻 × 𝐻)
brecop2.4 ⊆ (𝐺 × 𝐺)
brecop2.5 ¬ ∅ ∈ 𝐺
brecop2.6 dom + = (𝐺 × 𝐺)
brecop2.7 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶)))
Assertion
Ref Expression
brecop2 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶))

Proof of Theorem brecop2
StepHypRef Expression
1 brecop2.3 . . . 4 𝑅 ⊆ (𝐻 × 𝐻)
21brel 5617 . . 3 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] → ([⟨𝐴, 𝐵⟩] 𝐻 ∧ [⟨𝐶, 𝐷⟩] 𝐻))
3 brecop2.1 . . . . . . 7 dom = (𝐺 × 𝐺)
4 ecelqsdm 8367 . . . . . . 7 ((dom = (𝐺 × 𝐺) ∧ [⟨𝐴, 𝐵⟩] ∈ ((𝐺 × 𝐺) / )) → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
53, 4mpan 688 . . . . . 6 ([⟨𝐴, 𝐵⟩] ∈ ((𝐺 × 𝐺) / ) → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
6 brecop2.2 . . . . . 6 𝐻 = ((𝐺 × 𝐺) / )
75, 6eleq2s 2931 . . . . 5 ([⟨𝐴, 𝐵⟩] 𝐻 → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
8 opelxp 5591 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺) ↔ (𝐴𝐺𝐵𝐺))
97, 8sylib 220 . . . 4 ([⟨𝐴, 𝐵⟩] 𝐻 → (𝐴𝐺𝐵𝐺))
10 ecelqsdm 8367 . . . . . . 7 ((dom = (𝐺 × 𝐺) ∧ [⟨𝐶, 𝐷⟩] ∈ ((𝐺 × 𝐺) / )) → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
113, 10mpan 688 . . . . . 6 ([⟨𝐶, 𝐷⟩] ∈ ((𝐺 × 𝐺) / ) → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
1211, 6eleq2s 2931 . . . . 5 ([⟨𝐶, 𝐷⟩] 𝐻 → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
13 opelxp 5591 . . . . 5 (⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺) ↔ (𝐶𝐺𝐷𝐺))
1412, 13sylib 220 . . . 4 ([⟨𝐶, 𝐷⟩] 𝐻 → (𝐶𝐺𝐷𝐺))
159, 14anim12i 614 . . 3 (([⟨𝐴, 𝐵⟩] 𝐻 ∧ [⟨𝐶, 𝐷⟩] 𝐻) → ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
162, 15syl 17 . 2 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] → ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
17 brecop2.4 . . . . 5 ⊆ (𝐺 × 𝐺)
1817brel 5617 . . . 4 ((𝐴 + 𝐷) (𝐵 + 𝐶) → ((𝐴 + 𝐷) ∈ 𝐺 ∧ (𝐵 + 𝐶) ∈ 𝐺))
19 brecop2.6 . . . . . 6 dom + = (𝐺 × 𝐺)
20 brecop2.5 . . . . . 6 ¬ ∅ ∈ 𝐺
2119, 20ndmovrcl 7334 . . . . 5 ((𝐴 + 𝐷) ∈ 𝐺 → (𝐴𝐺𝐷𝐺))
2219, 20ndmovrcl 7334 . . . . 5 ((𝐵 + 𝐶) ∈ 𝐺 → (𝐵𝐺𝐶𝐺))
2321, 22anim12i 614 . . . 4 (((𝐴 + 𝐷) ∈ 𝐺 ∧ (𝐵 + 𝐶) ∈ 𝐺) → ((𝐴𝐺𝐷𝐺) ∧ (𝐵𝐺𝐶𝐺)))
2418, 23syl 17 . . 3 ((𝐴 + 𝐷) (𝐵 + 𝐶) → ((𝐴𝐺𝐷𝐺) ∧ (𝐵𝐺𝐶𝐺)))
25 an42 655 . . 3 (((𝐴𝐺𝐷𝐺) ∧ (𝐵𝐺𝐶𝐺)) ↔ ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
2624, 25sylib 220 . 2 ((𝐴 + 𝐷) (𝐵 + 𝐶) → ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
27 brecop2.7 . 2 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶)))
2816, 26, 27pm5.21nii 382 1 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3936  c0 4291  cop 4573   class class class wbr 5066   × cxp 5553  dom cdm 5555  (class class class)co 7156  [cec 8287   / cqs 8288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fv 6363  df-ov 7159  df-ec 8291  df-qs 8295
This theorem is referenced by:  ltsrpr  10499
  Copyright terms: Public domain W3C validator