![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brtrclfvcnv | Structured version Visualization version GIF version |
Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 10-May-2020.) |
Ref | Expression |
---|---|
brtrclfvcnv | ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7154 | . 2 ⊢ (𝑅 ∈ 𝑉 → ◡𝑅 ∈ V) | |
2 | brtrclfv 13787 | . 2 ⊢ (◡𝑅 ∈ V → (𝐴(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 class class class wbr 4685 ◡ccnv 5142 ∘ ccom 5147 ‘cfv 5926 t+ctcl 13770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-iota 5889 df-fun 5928 df-fv 5934 df-trcl 13772 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |