Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom3i Structured version   Visualization version   GIF version

Theorem brwdom3i 8473
 Description: Weak dominance implies existence of a covering function. (Contributed by Stefan O'Rear, 13-Feb-2015.)
Assertion
Ref Expression
brwdom3i (𝑋* 𝑌 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦))
Distinct variable groups:   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦

Proof of Theorem brwdom3i
StepHypRef Expression
1 relwdom 8456 . . . 4 Rel ≼*
21brrelexi 5148 . . 3 (𝑋* 𝑌𝑋 ∈ V)
31brrelex2i 5149 . . 3 (𝑋* 𝑌𝑌 ∈ V)
4 brwdom3 8472 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
52, 3, 4syl2anc 692 . 2 (𝑋* 𝑌 → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
65ibi 256 1 (𝑋* 𝑌 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1481  ∃wex 1702   ∈ wcel 1988  ∀wral 2909  ∃wrex 2910  Vcvv 3195   class class class wbr 4644  ‘cfv 5876   ≼* cwdom 8447 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-wdom 8449 This theorem is referenced by:  unwdomg  8474  xpwdomg  8475
 Copyright terms: Public domain W3C validator