MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalv Structured version   Visualization version   GIF version

Theorem ceqsalv 3223
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
ceqsalv.1 𝐴 ∈ V
ceqsalv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalv (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsalv
StepHypRef Expression
1 nfv 1840 . 2 𝑥𝜓
2 ceqsalv.1 . 2 𝐴 ∈ V
3 ceqsalv.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3ceqsal 3222 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1478   = wceq 1480  wcel 1987  Vcvv 3190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-12 2044  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-v 3192
This theorem is referenced by:  ralxpxfr2d  3316  clel2  3327  clel4  3330  frsn  5160  raliunxp  5231  fv3  6173  funimass4  6214  marypha2lem3  8303  kmlem12  8943  fpwwe2lem12  9423  vdwmc2  15626  itg2leub  23441  nmoubi  27515  choc0  28073  nmopub  28655  nmfnleub  28672  heibor1lem  33279  elmapintrab  37402
  Copyright terms: Public domain W3C validator