MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflim3 Structured version   Visualization version   GIF version

Theorem cflim3 9029
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
cflim3.1 𝐴 ∈ V
Assertion
Ref Expression
cflim3 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cflim3
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 5746 . . . 4 (Lim 𝐴 → Ord 𝐴)
2 cflim3.1 . . . . 5 𝐴 ∈ V
32elon 5694 . . . 4 (𝐴 ∈ On ↔ Ord 𝐴)
41, 3sylibr 224 . . 3 (Lim 𝐴𝐴 ∈ On)
5 cfval 9014 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
64, 5syl 17 . 2 (Lim 𝐴 → (cf‘𝐴) = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
7 fvex 6160 . . . 4 (card‘𝑥) ∈ V
87dfiin2 4526 . . 3 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) = {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)}
9 df-rex 2918 . . . . . 6 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)))
10 ancom 466 . . . . . . . 8 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}))
11 rabid 3111 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
12 selpw 4142 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1312anbi1i 730 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 𝑥 = 𝐴))
14 coflim 9028 . . . . . . . . . . . 12 ((Lim 𝐴𝑥𝐴) → ( 𝑥 = 𝐴 ↔ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))
1514pm5.32da 672 . . . . . . . . . . 11 (Lim 𝐴 → ((𝑥𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1613, 15syl5bb 272 . . . . . . . . . 10 (Lim 𝐴 → ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1711, 16syl5bb 272 . . . . . . . . 9 (Lim 𝐴 → (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1817anbi2d 739 . . . . . . . 8 (Lim 𝐴 → ((𝑦 = (card‘𝑥) ∧ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
1910, 18syl5bb 272 . . . . . . 7 (Lim 𝐴 → ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
2019exbidv 1852 . . . . . 6 (Lim 𝐴 → (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
219, 20syl5bb 272 . . . . 5 (Lim 𝐴 → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
2221abbidv 2744 . . . 4 (Lim 𝐴 → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
2322inteqd 4450 . . 3 (Lim 𝐴 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
248, 23syl5req 2673 . 2 (Lim 𝐴 {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))} = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
256, 24eqtrd 2660 1 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1992  {cab 2612  wral 2912  wrex 2913  {crab 2916  Vcvv 3191  wss 3560  𝒫 cpw 4135   cuni 4407   cint 4445   ciin 4491  Ord word 5684  Oncon0 5685  Lim wlim 5686  cfv 5850  cardccrd 8706  cfccf 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-int 4446  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-ord 5688  df-on 5689  df-lim 5690  df-iota 5813  df-fun 5852  df-fv 5858  df-cf 8712
This theorem is referenced by:  cflim2  9030  cfss  9032  cfslb  9033
  Copyright terms: Public domain W3C validator