Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneifv3 Structured version   Visualization version   GIF version

Theorem clsneifv3 38910
 Description: Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
clsneifv.x (𝜑𝑋𝐵)
Assertion
Ref Expression
clsneifv3 (𝜑 → (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))})
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠   𝐵,𝑛,𝑜,𝑝,𝑠   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐾,𝑗,𝑘,𝑙,𝑚   𝑛,𝐾,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙,𝑠   𝑛,𝑁,𝑜,𝑝   𝑋,𝑙,𝑚,𝑠   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑠)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑠,𝑝,𝑙)   𝐹(𝑚,𝑠)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑠,𝑝,𝑙)   𝐾(𝑠)   𝑁(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑠,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem clsneifv3
StepHypRef Expression
1 dfin5 3723 . 2 (𝒫 𝐵 ∩ (𝑁𝑋)) = {𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)}
2 clsnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 clsnei.p . . . . . . 7 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
4 clsnei.d . . . . . . 7 𝐷 = (𝑃𝐵)
5 clsnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
6 clsnei.h . . . . . . 7 𝐻 = (𝐹𝐷)
7 clsnei.r . . . . . . 7 (𝜑𝐾𝐻𝑁)
82, 3, 4, 5, 6, 7clsneinex 38907 . . . . . 6 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵))
9 elmapi 8045 . . . . . 6 (𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵)
108, 9syl 17 . . . . 5 (𝜑𝑁:𝐵⟶𝒫 𝒫 𝐵)
11 clsneifv.x . . . . 5 (𝜑𝑋𝐵)
1210, 11ffvelrnd 6523 . . . 4 (𝜑 → (𝑁𝑋) ∈ 𝒫 𝒫 𝐵)
1312elpwid 4314 . . 3 (𝜑 → (𝑁𝑋) ⊆ 𝒫 𝐵)
14 sseqin2 3960 . . 3 ((𝑁𝑋) ⊆ 𝒫 𝐵 ↔ (𝒫 𝐵 ∩ (𝑁𝑋)) = (𝑁𝑋))
1513, 14sylib 208 . 2 (𝜑 → (𝒫 𝐵 ∩ (𝑁𝑋)) = (𝑁𝑋))
167adantr 472 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐾𝐻𝑁)
1711adantr 472 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
18 simpr 479 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
192, 3, 4, 5, 6, 16, 17, 18clsneiel2 38909 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐾‘(𝐵𝑠)) ↔ ¬ 𝑠 ∈ (𝑁𝑋)))
2019con2bid 343 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠 ∈ (𝑁𝑋) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))))
2120rabbidva 3328 . 2 (𝜑 → {𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))})
221, 15, 213eqtr3a 2818 1 (𝜑 → (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {crab 3054  Vcvv 3340   ∖ cdif 3712   ∩ cin 3714   ⊆ wss 3715  𝒫 cpw 4302   class class class wbr 4804   ↦ cmpt 4881   ∘ ccom 5270  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815   ↑𝑚 cmap 8023 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-map 8025 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator