MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcovf Structured version   Visualization version   GIF version

Theorem cmpcovf 21104
Description: Combine cmpcov 21102 with ac6sfi 8148 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
iscmp.1 𝑋 = 𝐽
cmpcovf.2 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
Assertion
Ref Expression
cmpcovf ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Distinct variable groups:   𝑓,𝑠,𝑥,𝑦,𝑧,𝐴   𝐽,𝑠,𝑥,𝑦,𝑧   𝜑,𝑓,𝑠,𝑥   𝜓,𝑠,𝑧   𝑥,𝑋,𝑠
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝜓(𝑥,𝑦,𝑓)   𝐽(𝑓)   𝑋(𝑦,𝑧,𝑓)

Proof of Theorem cmpcovf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → 𝐽 ∈ Comp)
2 iscmp.1 . . 3 𝑋 = 𝐽
32cmpcov2 21103 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑))
4 elfpw 8212 . . . 4 (𝑢 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑢𝐽𝑢 ∈ Fin))
5 simplrl 799 . . . . . . . 8 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢𝐽)
6 selpw 4137 . . . . . . . 8 (𝑢 ∈ 𝒫 𝐽𝑢𝐽)
75, 6sylibr 224 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ 𝒫 𝐽)
8 simplrr 800 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ Fin)
97, 8elind 3776 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ (𝒫 𝐽 ∩ Fin))
10 simprl 793 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑋 = 𝑢)
11 simprr 795 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∀𝑦𝑢𝑧𝐴 𝜑)
12 cmpcovf.2 . . . . . . . 8 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
1312ac6sfi 8148 . . . . . . 7 ((𝑢 ∈ Fin ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
148, 11, 13syl2anc 692 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
15 unieq 4410 . . . . . . . . 9 (𝑠 = 𝑢 𝑠 = 𝑢)
1615eqeq2d 2631 . . . . . . . 8 (𝑠 = 𝑢 → (𝑋 = 𝑠𝑋 = 𝑢))
17 feq2 5984 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑓:𝑠𝐴𝑓:𝑢𝐴))
18 raleq 3127 . . . . . . . . . 10 (𝑠 = 𝑢 → (∀𝑦𝑠 𝜓 ↔ ∀𝑦𝑢 𝜓))
1917, 18anbi12d 746 . . . . . . . . 9 (𝑠 = 𝑢 → ((𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ (𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2019exbidv 1847 . . . . . . . 8 (𝑠 = 𝑢 → (∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2116, 20anbi12d 746 . . . . . . 7 (𝑠 = 𝑢 → ((𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)) ↔ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))))
2221rspcev 3295 . . . . . 6 ((𝑢 ∈ (𝒫 𝐽 ∩ Fin) ∧ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
239, 10, 14, 22syl12anc 1321 . . . . 5 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
2423ex 450 . . . 4 ((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
254, 24sylan2b 492 . . 3 ((𝐽 ∈ Comp ∧ 𝑢 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
2625rexlimdva 3024 . 2 (𝐽 ∈ Comp → (∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
271, 3, 26sylc 65 1 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  cin 3554  wss 3555  𝒫 cpw 4130   cuni 4402  wf 5843  cfv 5847  Fincfn 7899  Compccmp 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-1o 7505  df-er 7687  df-en 7900  df-fin 7903  df-cmp 21100
This theorem is referenced by:  txtube  21353  txcmplem1  21354  txcmplem2  21355  xkococnlem  21372  cnheibor  22662  heicant  33076
  Copyright terms: Public domain W3C validator