![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > conncompss | Structured version Visualization version GIF version |
Description: The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
Ref | Expression |
---|---|
conncompss | ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1081 | . . . . 5 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑋) | |
2 | conntop 21268 | . . . . . . 7 ⊢ ((𝐽 ↾t 𝑇) ∈ Conn → (𝐽 ↾t 𝑇) ∈ Top) | |
3 | 2 | 3ad2ant3 1104 | . . . . . 6 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝐽 ↾t 𝑇) ∈ Top) |
4 | restrcl 21009 | . . . . . . 7 ⊢ ((𝐽 ↾t 𝑇) ∈ Top → (𝐽 ∈ V ∧ 𝑇 ∈ V)) | |
5 | 4 | simprd 478 | . . . . . 6 ⊢ ((𝐽 ↾t 𝑇) ∈ Top → 𝑇 ∈ V) |
6 | elpwg 4199 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋)) | |
7 | 3, 5, 6 | 3syl 18 | . . . . 5 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋)) |
8 | 1, 7 | mpbird 247 | . . . 4 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ∈ 𝒫 𝑋) |
9 | 3simpc 1080 | . . . 4 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn)) | |
10 | eleq2 2719 | . . . . . 6 ⊢ (𝑦 = 𝑇 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑇)) | |
11 | oveq2 6698 | . . . . . . 7 ⊢ (𝑦 = 𝑇 → (𝐽 ↾t 𝑦) = (𝐽 ↾t 𝑇)) | |
12 | 11 | eleq1d 2715 | . . . . . 6 ⊢ (𝑦 = 𝑇 → ((𝐽 ↾t 𝑦) ∈ Conn ↔ (𝐽 ↾t 𝑇) ∈ Conn)) |
13 | 10, 12 | anbi12d 747 | . . . . 5 ⊢ (𝑦 = 𝑇 → ((𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn) ↔ (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn))) |
14 | eleq2 2719 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | |
15 | oveq2 6698 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐽 ↾t 𝑥) = (𝐽 ↾t 𝑦)) | |
16 | 15 | eleq1d 2715 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t 𝑦) ∈ Conn)) |
17 | 14, 16 | anbi12d 747 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn))) |
18 | 17 | cbvrabv 3230 | . . . . 5 ⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn)} |
19 | 13, 18 | elrab2 3399 | . . . 4 ⊢ (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ (𝑇 ∈ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn))) |
20 | 8, 9, 19 | sylanbrc 699 | . . 3 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
21 | elssuni 4499 | . . 3 ⊢ (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} → 𝑇 ⊆ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | |
22 | 20, 21 | syl 17 | . 2 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
23 | conncomp.2 | . 2 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
24 | 22, 23 | syl6sseqr 3685 | 1 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 ⊆ wss 3607 𝒫 cpw 4191 ∪ cuni 4468 (class class class)co 6690 ↾t crest 16128 Topctop 20746 Conncconn 21262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-rest 16130 df-top 20747 df-conn 21263 |
This theorem is referenced by: conncompcld 21285 tgpconncompeqg 21962 tgpconncomp 21963 |
Copyright terms: Public domain | W3C validator |