Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosnop Structured version   Visualization version   GIF version

Theorem cosnop 30431
Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cosnop.a (𝜑𝐴𝑉)
cosnop.b (𝜑𝐵𝑊)
cosnop.c (𝜑𝐶𝑋)
Assertion
Ref Expression
cosnop (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}) = {⟨𝐶, 𝐵⟩})

Proof of Theorem cosnop
StepHypRef Expression
1 cosnop.a . . 3 (𝜑𝐴𝑉)
2 snnzg 4710 . . 3 (𝐴𝑉 → {𝐴} ≠ ∅)
3 xpco 6140 . . 3 ({𝐴} ≠ ∅ → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵}))
41, 2, 33syl 18 . 2 (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵}))
5 cosnop.b . . . 4 (𝜑𝐵𝑊)
6 xpsng 6901 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
71, 5, 6syl2anc 586 . . 3 (𝜑 → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
8 cosnop.c . . . 4 (𝜑𝐶𝑋)
9 xpsng 6901 . . . 4 ((𝐶𝑋𝐴𝑉) → ({𝐶} × {𝐴}) = {⟨𝐶, 𝐴⟩})
108, 1, 9syl2anc 586 . . 3 (𝜑 → ({𝐶} × {𝐴}) = {⟨𝐶, 𝐴⟩})
117, 10coeq12d 5735 . 2 (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}))
12 xpsng 6901 . . 3 ((𝐶𝑋𝐵𝑊) → ({𝐶} × {𝐵}) = {⟨𝐶, 𝐵⟩})
138, 5, 12syl2anc 586 . 2 (𝜑 → ({𝐶} × {𝐵}) = {⟨𝐶, 𝐵⟩})
144, 11, 133eqtr3d 2864 1 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}) = {⟨𝐶, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3016  c0 4291  {csn 4567  cop 4573   × cxp 5553  ccom 5559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362
This theorem is referenced by:  coprprop  30435
  Copyright terms: Public domain W3C validator