MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cvs Structured version   Visualization version   GIF version

Definition df-cvs 22970
Description: Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.)
Assertion
Ref Expression
df-cvs ℂVec = (ℂMod ∩ LVec)

Detailed syntax breakdown of Definition df-cvs
StepHypRef Expression
1 ccvs 22969 . 2 class ℂVec
2 cclm 22908 . . 3 class ℂMod
3 clvec 19150 . . 3 class LVec
42, 3cin 3606 . 2 class (ℂMod ∩ LVec)
51, 4wceq 1523 1 wff ℂVec = (ℂMod ∩ LVec)
Colors of variables: wff setvar class
This definition is referenced by:  cvslvec  22971  cvsclm  22972  iscvs  22973  cvsi  22976  cnstrcvs  22987  cncvs  22991  recvs  22992  qcvs  22993  zclmncvs  22994
  Copyright terms: Public domain W3C validator