MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cvs Structured version   Visualization version   GIF version

Definition df-cvs 22661
Description: Define a complex vector space, which is just a complex left module and a vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Assertion
Ref Expression
df-cvs ℂVec = (ℂMod ∩ LVec)

Detailed syntax breakdown of Definition df-cvs
StepHypRef Expression
1 ccvs 22660 . 2 class ℂVec
2 cclm 22601 . . 3 class ℂMod
3 clvec 18869 . . 3 class LVec
42, 3cin 3538 . 2 class (ℂMod ∩ LVec)
51, 4wceq 1474 1 wff ℂVec = (ℂMod ∩ LVec)
Colors of variables: wff setvar class
This definition is referenced by:  cvslvec  22662  cvsclm  22663  iscvs  22664  cvsi  22667  cnstrcvs  22678  cncvs  22682
  Copyright terms: Public domain W3C validator