MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdm2 Structured version   Visualization version   GIF version

Theorem dfdm2 6132
Description: Alternate definition of domain df-dm 5565 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 5756 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 6111 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2844 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 4851 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 4851 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 6130 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2846 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 5566 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2830 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 5845 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 5846 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 5764 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2847 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 4137 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 4128 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2849 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3934   cuni 4838  ccnv 5554  dom cdm 5555  ran crn 5556  ccom 5559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator