Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsalgen2 Structured version   Visualization version   GIF version

Theorem dfsalgen2 42644
Description: Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
dfsalgen2.1 (𝜑𝑋𝑉)
Assertion
Ref Expression
dfsalgen2 (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
Distinct variable groups:   𝑦,𝑆   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem dfsalgen2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . 8 ((SalGen‘𝑋) = 𝑆 → (SalGen‘𝑋) = 𝑆)
21eqcomd 2827 . . . . . . 7 ((SalGen‘𝑋) = 𝑆𝑆 = (SalGen‘𝑋))
32adantl 484 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 = (SalGen‘𝑋))
4 dfsalgen2.1 . . . . . . . 8 (𝜑𝑋𝑉)
5 salgencl 42635 . . . . . . . 8 (𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)
64, 5syl 17 . . . . . . 7 (𝜑 → (SalGen‘𝑋) ∈ SAlg)
76adantr 483 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) ∈ SAlg)
83, 7eqeltrd 2913 . . . . 5 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 ∈ SAlg)
9 unieq 4849 . . . . . . 7 ((SalGen‘𝑋) = 𝑆 (SalGen‘𝑋) = 𝑆)
109adantl 484 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑆)
114adantr 483 . . . . . . 7 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋𝑉)
12 eqid 2821 . . . . . . 7 (SalGen‘𝑋) = (SalGen‘𝑋)
13 eqid 2821 . . . . . . 7 𝑋 = 𝑋
1411, 12, 13salgenuni 42640 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑋)
1510, 14eqtr3d 2858 . . . . 5 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 = 𝑋)
1612sssalgen 42638 . . . . . . 7 (𝑋𝑉𝑋 ⊆ (SalGen‘𝑋))
1711, 16syl 17 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋 ⊆ (SalGen‘𝑋))
18 simpr 487 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑆)
1917, 18sseqtrd 4007 . . . . 5 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋𝑆)
208, 15, 193jca 1124 . . . 4 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆))
213ad2antrr 724 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑆 = (SalGen‘𝑋))
2221adantrl 714 . . . . . . 7 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑆 = (SalGen‘𝑋))
2311ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑋𝑉)
2423adantrl 714 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑋𝑉)
25 simplr 767 . . . . . . . . 9 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑦 ∈ SAlg)
2625adantrl 714 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑦 ∈ SAlg)
27 simpr 487 . . . . . . . . 9 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑋𝑦)
2827adantrl 714 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑋𝑦)
29 simprl 769 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑦 = 𝑋)
3024, 12, 26, 28, 29salgenss 42639 . . . . . . 7 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → (SalGen‘𝑋) ⊆ 𝑦)
3122, 30eqsstrd 4005 . . . . . 6 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)
3231ex 415 . . . . 5 (((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) → (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))
3332ralrimiva 3182 . . . 4 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))
3420, 33jca 514 . . 3 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦)))
3534ex 415 . 2 (𝜑 → ((SalGen‘𝑋) = 𝑆 → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
364adantr 483 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑋𝑉)
37 simprl1 1214 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑆 ∈ SAlg)
38 simprl2 1215 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑆 = 𝑋)
39 simprl3 1216 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑋𝑆)
40 unieq 4849 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 𝑦 = 𝑤)
4140eqeq1d 2823 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ( 𝑦 = 𝑋 𝑤 = 𝑋))
42 sseq2 3993 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝑋𝑦𝑋𝑤))
4341, 42anbi12d 632 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (( 𝑦 = 𝑋𝑋𝑦) ↔ ( 𝑤 = 𝑋𝑋𝑤)))
44 sseq2 3993 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑆𝑦𝑆𝑤))
4543, 44imbi12d 347 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ↔ (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤)))
4645cbvralvw 3449 . . . . . . . . . . 11 (∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ↔ ∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
4746biimpi 218 . . . . . . . . . 10 (∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) → ∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
4847adantr 483 . . . . . . . . 9 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ 𝑤 ∈ SAlg) → ∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
49 simpr 487 . . . . . . . . 9 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ 𝑤 ∈ SAlg) → 𝑤 ∈ SAlg)
5048, 49jca 514 . . . . . . . 8 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ 𝑤 ∈ SAlg) → (∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤) ∧ 𝑤 ∈ SAlg))
51503ad2antr1 1184 . . . . . . 7 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → (∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤) ∧ 𝑤 ∈ SAlg))
52 3simpc 1146 . . . . . . . 8 ((𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤) → ( 𝑤 = 𝑋𝑋𝑤))
5352adantl 484 . . . . . . 7 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → ( 𝑤 = 𝑋𝑋𝑤))
54 rspa 3206 . . . . . . 7 ((∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤) ∧ 𝑤 ∈ SAlg) → (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
5551, 53, 54sylc 65 . . . . . 6 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → 𝑆𝑤)
5655adantll 712 . . . . 5 ((((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦)) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → 𝑆𝑤)
5756adantll 712 . . . 4 (((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → 𝑆𝑤)
5836, 37, 38, 39, 57issalgend 42641 . . 3 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → (SalGen‘𝑋) = 𝑆)
5958ex 415 . 2 (𝜑 → (((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦)) → (SalGen‘𝑋) = 𝑆))
6035, 59impbid 214 1 (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wss 3936   cuni 4838  cfv 6355  SAlgcsalg 42613  SalGencsalgen 42617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-salg 42614  df-salgen 42618
This theorem is referenced by:  unisalgen2  42657
  Copyright terms: Public domain W3C validator