Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenss Structured version   Visualization version   GIF version

Theorem salgenss 39030
Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 39038, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgenss.x (𝜑𝑋𝑉)
salgenss.g 𝐺 = (SalGen‘𝑋)
salgenss.s (𝜑𝑆 ∈ SAlg)
salgenss.i (𝜑𝑋𝑆)
salgenss.u (𝜑 𝑆 = 𝑋)
Assertion
Ref Expression
salgenss (𝜑𝐺𝑆)

Proof of Theorem salgenss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 salgenss.g . . . 4 𝐺 = (SalGen‘𝑋)
21a1i 11 . . 3 (𝜑𝐺 = (SalGen‘𝑋))
3 salgenss.x . . . 4 (𝜑𝑋𝑉)
4 salgenval 39017 . . . 4 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
53, 4syl 17 . . 3 (𝜑 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
62, 5eqtrd 2639 . 2 (𝜑𝐺 = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
7 salgenss.s . . . . 5 (𝜑𝑆 ∈ SAlg)
8 salgenss.u . . . . . 6 (𝜑 𝑆 = 𝑋)
9 salgenss.i . . . . . 6 (𝜑𝑋𝑆)
108, 9jca 552 . . . . 5 (𝜑 → ( 𝑆 = 𝑋𝑋𝑆))
117, 10jca 552 . . . 4 (𝜑 → (𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆)))
12 unieq 4370 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
1312eqeq1d 2607 . . . . . 6 (𝑠 = 𝑆 → ( 𝑠 = 𝑋 𝑆 = 𝑋))
14 sseq2 3585 . . . . . 6 (𝑠 = 𝑆 → (𝑋𝑠𝑋𝑆))
1513, 14anbi12d 742 . . . . 5 (𝑠 = 𝑆 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑆 = 𝑋𝑋𝑆)))
1615elrab 3326 . . . 4 (𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆)))
1711, 16sylibr 222 . . 3 (𝜑𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
18 intss1 4417 . . 3 (𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ 𝑆)
1917, 18syl 17 . 2 (𝜑 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ 𝑆)
206, 19eqsstrd 3597 1 (𝜑𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  {crab 2895  wss 3535   cuni 4362   cint 4400  cfv 5786  SAlgcsalg 39004  SalGencsalgen 39008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-int 4401  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-iota 5750  df-fun 5788  df-fv 5794  df-salg 39005  df-salgen 39009
This theorem is referenced by:  issalgend  39032  dfsalgen2  39035  borelmbl  39326  smfpimbor1lem2  39484
  Copyright terms: Public domain W3C validator