Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelscnveq2 Structured version   Visualization version   GIF version

Theorem elrelscnveq2 34584
 Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
elrelscnveq2 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elrelscnveq2
StepHypRef Expression
1 cnvsym 5668 . . . 4 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
21a1i 11 . . 3 (𝑅 ∈ Rels → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
3 cnvsym 5668 . . . . 5 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
4 elrelsrelim 34579 . . . . . . 7 (𝑅 ∈ Rels → Rel 𝑅)
5 dfrel2 5741 . . . . . . 7 (Rel 𝑅𝑅 = 𝑅)
64, 5sylib 208 . . . . . 6 (𝑅 ∈ Rels → 𝑅 = 𝑅)
76sseq1d 3773 . . . . 5 (𝑅 ∈ Rels → (𝑅𝑅𝑅𝑅))
83, 7syl5rbbr 275 . . . 4 (𝑅 ∈ Rels → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
9 relbrcnvg 5662 . . . . . . 7 (Rel 𝑅 → (𝑥𝑅𝑦𝑦𝑅𝑥))
104, 9syl 17 . . . . . 6 (𝑅 ∈ Rels → (𝑥𝑅𝑦𝑦𝑅𝑥))
11 relbrcnvg 5662 . . . . . . 7 (Rel 𝑅 → (𝑦𝑅𝑥𝑥𝑅𝑦))
124, 11syl 17 . . . . . 6 (𝑅 ∈ Rels → (𝑦𝑅𝑥𝑥𝑅𝑦))
1310, 12imbi12d 333 . . . . 5 (𝑅 ∈ Rels → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑦𝑅𝑥𝑥𝑅𝑦)))
14132albidv 2000 . . . 4 (𝑅 ∈ Rels → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦)))
158, 14bitrd 268 . . 3 (𝑅 ∈ Rels → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦)))
162, 15anbi12d 749 . 2 (𝑅 ∈ Rels → ((𝑅𝑅𝑅𝑅) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦))))
17 eqss 3759 . 2 (𝑅 = 𝑅 ↔ (𝑅𝑅𝑅𝑅))
18 2albiim 1966 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦)))
1916, 17, 183bitr4g 303 1 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1630   = wceq 1632   ∈ wcel 2139   ⊆ wss 3715   class class class wbr 4804  ◡ccnv 5265  Rel wrel 5271   Rels crels 34316 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273  df-cnv 5274  df-rels 34576 This theorem is referenced by:  elrelscnveq4  34585  dfsymrels5  34635
 Copyright terms: Public domain W3C validator