Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrn3 Structured version   Visualization version   GIF version

Theorem elrn3 31848
 Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.)
Assertion
Ref Expression
elrn3 (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)

Proof of Theorem elrn3
StepHypRef Expression
1 df-rn 5197 . . 3 ran 𝐵 = dom 𝐵
21eleq2i 2763 . 2 (𝐴 ∈ ran 𝐵𝐴 ∈ dom 𝐵)
3 eldm3 31847 . 2 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)
4 cnvxp 5629 . . . . . . 7 (V × {𝐴}) = ({𝐴} × V)
54ineq2i 3887 . . . . . 6 (𝐵(V × {𝐴})) = (𝐵 ∩ ({𝐴} × V))
6 cnvin 5618 . . . . . 6 (𝐵 ∩ (V × {𝐴})) = (𝐵(V × {𝐴}))
7 df-res 5198 . . . . . 6 (𝐵 ↾ {𝐴}) = (𝐵 ∩ ({𝐴} × V))
85, 6, 73eqtr4ri 2725 . . . . 5 (𝐵 ↾ {𝐴}) = (𝐵 ∩ (V × {𝐴}))
98eqeq1i 2697 . . . 4 ((𝐵 ↾ {𝐴}) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅)
10 inss2 3910 . . . . . 6 (𝐵 ∩ (V × {𝐴})) ⊆ (V × {𝐴})
11 relxp 5203 . . . . . 6 Rel (V × {𝐴})
12 relss 5283 . . . . . 6 ((𝐵 ∩ (V × {𝐴})) ⊆ (V × {𝐴}) → (Rel (V × {𝐴}) → Rel (𝐵 ∩ (V × {𝐴}))))
1310, 11, 12mp2 9 . . . . 5 Rel (𝐵 ∩ (V × {𝐴}))
14 cnveq0 5669 . . . . 5 (Rel (𝐵 ∩ (V × {𝐴})) → ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅))
1513, 14ax-mp 5 . . . 4 ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅)
169, 15bitr4i 267 . . 3 ((𝐵 ↾ {𝐴}) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅)
1716necon3bii 2916 . 2 ((𝐵 ↾ {𝐴}) ≠ ∅ ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)
182, 3, 173bitri 286 1 (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1564   ∈ wcel 2071   ≠ wne 2864  Vcvv 3272   ∩ cin 3647   ⊆ wss 3648  ∅c0 3991  {csn 4253   × cxp 5184  ◡ccnv 5185  dom cdm 5186  ran crn 5187   ↾ cres 5188  Rel wrel 5191 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-sep 4857  ax-nul 4865  ax-pr 4979 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-ral 2987  df-rex 2988  df-rab 2991  df-v 3274  df-sbc 3510  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-nul 3992  df-if 4163  df-sn 4254  df-pr 4256  df-op 4260  df-br 4729  df-opab 4789  df-xp 5192  df-rel 5193  df-cnv 5194  df-dm 5196  df-rn 5197  df-res 5198 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator