Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm3 Structured version   Visualization version   GIF version

Theorem eldm3 32997
Description: Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.)
Assertion
Ref Expression
eldm3 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)

Proof of Theorem eldm3
Dummy variables 𝑥 𝑦 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐴 ∈ dom 𝐵𝐴 ∈ V)
2 snprc 4653 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
3 reseq2 5848 . . . . 5 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = (𝐵 ↾ ∅))
4 res0 5857 . . . . 5 (𝐵 ↾ ∅) = ∅
53, 4syl6eq 2872 . . . 4 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = ∅)
62, 5sylbi 219 . . 3 𝐴 ∈ V → (𝐵 ↾ {𝐴}) = ∅)
76necon1ai 3043 . 2 ((𝐵 ↾ {𝐴}) ≠ ∅ → 𝐴 ∈ V)
8 eleq1 2900 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐵𝐴 ∈ dom 𝐵))
9 sneq 4577 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
109reseq2d 5853 . . . 4 (𝑥 = 𝐴 → (𝐵 ↾ {𝑥}) = (𝐵 ↾ {𝐴}))
1110neeq1d 3075 . . 3 (𝑥 = 𝐴 → ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
12 dfclel 2894 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
1312exbii 1848 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
14 vex 3497 . . . . 5 𝑥 ∈ V
1514eldm2 5770 . . . 4 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
16 n0 4310 . . . . 5 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}))
17 elres 5891 . . . . . . 7 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
18 eleq1 2900 . . . . . . . . . . 11 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
1918pm5.32i 577 . . . . . . . . . 10 ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
20 opeq1 4803 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
2120eqeq2d 2832 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑝 = ⟨𝑧, 𝑦⟩ ↔ 𝑝 = ⟨𝑥, 𝑦⟩))
2221anbi1d 631 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2319, 22syl5bbr 287 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2423exbidv 1922 . . . . . . . 8 (𝑧 = 𝑥 → (∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2514, 24rexsn 4620 . . . . . . 7 (∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2617, 25bitri 277 . . . . . 6 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2726exbii 1848 . . . . 5 (∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
28 excom 2169 . . . . 5 (∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵) ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2916, 27, 283bitri 299 . . . 4 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
3013, 15, 293bitr4i 305 . . 3 (𝑥 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝑥}) ≠ ∅)
318, 11, 30vtoclbg 3569 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
321, 7, 31pm5.21nii 382 1 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3016  wrex 3139  Vcvv 3494  c0 4291  {csn 4567  cop 4573  dom cdm 5555  cres 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-dm 5565  df-res 5567
This theorem is referenced by:  elrn3  32998
  Copyright terms: Public domain W3C validator