Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm3 Structured version   Visualization version   GIF version

Theorem eldm3 31979
 Description: Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.)
Assertion
Ref Expression
eldm3 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)

Proof of Theorem eldm3
Dummy variables 𝑥 𝑦 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3352 . 2 (𝐴 ∈ dom 𝐵𝐴 ∈ V)
2 snprc 4397 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
3 reseq2 5546 . . . . 5 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = (𝐵 ↾ ∅))
4 res0 5555 . . . . 5 (𝐵 ↾ ∅) = ∅
53, 4syl6eq 2810 . . . 4 ({𝐴} = ∅ → (𝐵 ↾ {𝐴}) = ∅)
62, 5sylbi 207 . . 3 𝐴 ∈ V → (𝐵 ↾ {𝐴}) = ∅)
76necon1ai 2959 . 2 ((𝐵 ↾ {𝐴}) ≠ ∅ → 𝐴 ∈ V)
8 eleq1 2827 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐵𝐴 ∈ dom 𝐵))
9 sneq 4331 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
109reseq2d 5551 . . . 4 (𝑥 = 𝐴 → (𝐵 ↾ {𝑥}) = (𝐵 ↾ {𝐴}))
1110neeq1d 2991 . . 3 (𝑥 = 𝐴 → ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
12 df-clel 2756 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
1312exbii 1923 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
14 vex 3343 . . . . 5 𝑥 ∈ V
1514eldm2 5477 . . . 4 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
16 n0 4074 . . . . 5 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}))
17 elres 5593 . . . . . . 7 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
18 eleq1 2827 . . . . . . . . . . 11 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
1918pm5.32i 672 . . . . . . . . . 10 ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
20 opeq1 4553 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
2120eqeq2d 2770 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑝 = ⟨𝑧, 𝑦⟩ ↔ 𝑝 = ⟨𝑥, 𝑦⟩))
2221anbi1d 743 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2319, 22syl5bbr 274 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2423exbidv 1999 . . . . . . . 8 (𝑧 = 𝑥 → (∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵)))
2514, 24rexsn 4367 . . . . . . 7 (∃𝑧 ∈ {𝑥}∃𝑦(𝑝 = ⟨𝑧, 𝑦⟩ ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2617, 25bitri 264 . . . . . 6 (𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2726exbii 1923 . . . . 5 (∃𝑝 𝑝 ∈ (𝐵 ↾ {𝑥}) ↔ ∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
28 excom 2191 . . . . 5 (∃𝑝𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵) ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
2916, 27, 283bitri 286 . . . 4 ((𝐵 ↾ {𝑥}) ≠ ∅ ↔ ∃𝑦𝑝(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑝𝐵))
3013, 15, 293bitr4i 292 . . 3 (𝑥 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝑥}) ≠ ∅)
318, 11, 30vtoclbg 3407 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅))
321, 7, 31pm5.21nii 367 1 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051  Vcvv 3340  ∅c0 4058  {csn 4321  ⟨cop 4327  dom cdm 5266   ↾ cres 5268 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273  df-dm 5276  df-res 5278 This theorem is referenced by:  elrn3  31980
 Copyright terms: Public domain W3C validator