MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinfg Structured version   Visualization version   GIF version

Theorem fiinfg 8963
Description: Lemma showing existence and closure of infimum of a finite set. (Contributed by AV, 6-Oct-2020.)
Assertion
Ref Expression
fiinfg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem fiinfg
StepHypRef Expression
1 fiming 8962 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦))
2 equcom 2025 . . . . . . . . . . . 12 (𝑥 = 𝑦𝑦 = 𝑥)
3 sotrieq2 5503 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴 ∧ (𝑦𝐴𝑥𝐴)) → (𝑦 = 𝑥 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦)))
43ancom2s 648 . . . . . . . . . . . 12 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑦 = 𝑥 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦)))
52, 4syl5bb 285 . . . . . . . . . . 11 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦)))
65simprbda 501 . . . . . . . . . 10 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥 = 𝑦) → ¬ 𝑦𝑅𝑥)
76ex 415 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 → ¬ 𝑦𝑅𝑥))
87anassrs 470 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ¬ 𝑦𝑅𝑥))
98a1dd 50 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ((𝑥𝑦𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥)))
10 pm2.27 42 . . . . . . . 8 (𝑥𝑦 → ((𝑥𝑦𝑥𝑅𝑦) → 𝑥𝑅𝑦))
11 soasym 5504 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → ¬ 𝑦𝑅𝑥))
1211anassrs 470 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦 → ¬ 𝑦𝑅𝑥))
1310, 12syl9r 78 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 → ((𝑥𝑦𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥)))
149, 13pm2.61dne 3103 . . . . . 6 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥))
1514ralimdva 3177 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → ∀𝑦𝐴 ¬ 𝑦𝑅𝑥))
16 breq1 5069 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑅𝑦𝑥𝑅𝑦))
1716rspcev 3623 . . . . . . . 8 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑧𝐴 𝑧𝑅𝑦)
1817ex 415 . . . . . . 7 (𝑥𝐴 → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
1918ralrimivw 3183 . . . . . 6 (𝑥𝐴 → ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2019adantl 484 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2115, 20jctird 529 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2221reximdva 3274 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
23223ad2ant1 1129 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
241, 23mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wne 3016  wral 3138  wrex 3139  c0 4291   class class class wbr 5066   Or wor 5473  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1o 8102  df-er 8289  df-en 8510  df-fin 8513
This theorem is referenced by:  fiinf2g  8964
  Copyright terms: Public domain W3C validator