Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneref Structured version   Visualization version   GIF version

Theorem fneref 31984
Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.)
Assertion
Ref Expression
fneref (𝐴𝑉𝐴Fne𝐴)

Proof of Theorem fneref
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 𝐴 = 𝐴
2 ssid 3603 . . . . 5 𝑥𝑥
3 elequ2 2001 . . . . . . 7 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
4 sseq1 3605 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑥𝑥𝑥))
53, 4anbi12d 746 . . . . . 6 (𝑧 = 𝑥 → ((𝑦𝑧𝑧𝑥) ↔ (𝑦𝑥𝑥𝑥)))
65rspcev 3295 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝑥𝑥𝑥)) → ∃𝑧𝐴 (𝑦𝑧𝑧𝑥))
72, 6mpanr2 719 . . . 4 ((𝑥𝐴𝑦𝑥) → ∃𝑧𝐴 (𝑦𝑧𝑧𝑥))
87rgen2 2969 . . 3 𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥)
91, 8pm3.2i 471 . 2 ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥))
101, 1isfne2 31976 . 2 (𝐴𝑉 → (𝐴Fne𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥))))
119, 10mpbiri 248 1 (𝐴𝑉𝐴Fne𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  wss 3555   cuni 4402   class class class wbr 4613  Fnecfne 31970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-topgen 16025  df-fne 31971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator