MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funprg Structured version   Visualization version   GIF version

Theorem funprg 5898
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
funprg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})

Proof of Theorem funprg
StepHypRef Expression
1 funsng 5895 . . . . . 6 ((𝐴𝑉𝐶𝑋) → Fun {⟨𝐴, 𝐶⟩})
2 funsng 5895 . . . . . 6 ((𝐵𝑊𝐷𝑌) → Fun {⟨𝐵, 𝐷⟩})
31, 2anim12i 589 . . . . 5 (((𝐴𝑉𝐶𝑋) ∧ (𝐵𝑊𝐷𝑌)) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}))
43an4s 868 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}))
543adant3 1079 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}))
6 dmsnopg 5565 . . . . . 6 (𝐶𝑋 → dom {⟨𝐴, 𝐶⟩} = {𝐴})
7 dmsnopg 5565 . . . . . 6 (𝐷𝑌 → dom {⟨𝐵, 𝐷⟩} = {𝐵})
86, 7ineqan12d 3794 . . . . 5 ((𝐶𝑋𝐷𝑌) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ({𝐴} ∩ {𝐵}))
9 disjsn2 4217 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
108, 9sylan9eq 2675 . . . 4 (((𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅)
11103adant1 1077 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅)
12 funun 5890 . . 3 (((Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
135, 11, 12syl2anc 692 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
14 df-pr 4151 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
1514funeqi 5868 . 2 (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
1613, 15sylibr 224 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cun 3553  cin 3554  c0 3891  {csn 4148  {cpr 4150  cop 4154  dom cdm 5074  Fun wfun 5841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-fun 5849
This theorem is referenced by:  funtpg  5900  funtpgOLD  5901  funpr  5902  fnprg  5905  fpropnf1  6478
  Copyright terms: Public domain W3C validator