Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoltubd Structured version   Visualization version   GIF version

Theorem icoltubd 39218
Description: An element of a left closed right open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
icoltubd.1 (𝜑𝐴 ∈ ℝ*)
icoltubd.2 (𝜑𝐵 ∈ ℝ*)
icoltubd.3 (𝜑𝐶 ∈ (𝐴[,)𝐵))
Assertion
Ref Expression
icoltubd (𝜑𝐶 < 𝐵)

Proof of Theorem icoltubd
StepHypRef Expression
1 icoltubd.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 icoltubd.2 . 2 (𝜑𝐵 ∈ ℝ*)
3 icoltubd.3 . 2 (𝜑𝐶 ∈ (𝐴[,)𝐵))
4 icoltub 39178 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵)
51, 2, 3, 4syl3anc 1323 1 (𝜑𝐶 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987   class class class wbr 4623  (class class class)co 6615  *cxr 10033   < clt 10034  [,)cico 12135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-xr 10038  df-ico 12139
This theorem is referenced by:  icomnfinre  39225
  Copyright terms: Public domain W3C validator