MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infssuni Structured version   Visualization version   GIF version

Theorem infssuni 8815
Description: If an infinite set 𝐴 is included in the underlying set of a finite cover 𝐵, then there exists a set of the cover that contains an infinite number of element of 𝐴. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
infssuni ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem infssuni
StepHypRef Expression
1 dfral2 3237 . . 3 (∀𝑥𝐵 (𝐴𝑥) ∈ Fin ↔ ¬ ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)
2 iunfi 8812 . . . . . . 7 ((𝐵 ∈ Fin ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ Fin) → 𝑥𝐵 (𝐴𝑥) ∈ Fin)
3 iunin2 4993 . . . . . . . . 9 𝑥𝐵 (𝐴𝑥) = (𝐴 𝑥𝐵 𝑥)
43eleq1i 2903 . . . . . . . 8 ( 𝑥𝐵 (𝐴𝑥) ∈ Fin ↔ (𝐴 𝑥𝐵 𝑥) ∈ Fin)
5 uniiun 4982 . . . . . . . . . . . 12 𝐵 = 𝑥𝐵 𝑥
65eqcomi 2830 . . . . . . . . . . 11 𝑥𝐵 𝑥 = 𝐵
76ineq2i 4186 . . . . . . . . . 10 (𝐴 𝑥𝐵 𝑥) = (𝐴 𝐵)
87eleq1i 2903 . . . . . . . . 9 ((𝐴 𝑥𝐵 𝑥) ∈ Fin ↔ (𝐴 𝐵) ∈ Fin)
9 df-ss 3952 . . . . . . . . . . 11 (𝐴 𝐵 ↔ (𝐴 𝐵) = 𝐴)
10 eleq1 2900 . . . . . . . . . . . 12 ((𝐴 𝐵) = 𝐴 → ((𝐴 𝐵) ∈ Fin ↔ 𝐴 ∈ Fin))
11 pm2.24 124 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))
1210, 11syl6bi 255 . . . . . . . . . . 11 ((𝐴 𝐵) = 𝐴 → ((𝐴 𝐵) ∈ Fin → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
139, 12sylbi 219 . . . . . . . . . 10 (𝐴 𝐵 → ((𝐴 𝐵) ∈ Fin → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
1413com12 32 . . . . . . . . 9 ((𝐴 𝐵) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
158, 14sylbi 219 . . . . . . . 8 ((𝐴 𝑥𝐵 𝑥) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
164, 15sylbi 219 . . . . . . 7 ( 𝑥𝐵 (𝐴𝑥) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
172, 16syl 17 . . . . . 6 ((𝐵 ∈ Fin ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ Fin) → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
1817ex 415 . . . . 5 (𝐵 ∈ Fin → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))))
1918com24 95 . . . 4 (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → (𝐴 𝐵 → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))))
20193imp21 1110 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))
211, 20syl5bir 245 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → (¬ ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))
2221pm2.18d 127 1 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  cin 3935  wss 3936   cuni 4838   ciun 4919  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-fin 8513
This theorem is referenced by:  bwth  22018
  Copyright terms: Public domain W3C validator