![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscyggen | Structured version Visualization version GIF version |
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
Ref | Expression |
---|---|
iscyggen | ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ) → 𝑥 = 𝑋) | |
2 | 1 | oveq2d 6706 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛 · 𝑋)) |
3 | 2 | mpteq2dva 4777 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) |
4 | 3 | rneqd 5385 | . . 3 ⊢ (𝑥 = 𝑋 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) |
5 | 4 | eqeq1d 2653 | . 2 ⊢ (𝑥 = 𝑋 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
6 | iscyg3.e | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
7 | 5, 6 | elrab2 3399 | 1 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ↦ cmpt 4762 ran crn 5144 ‘cfv 5926 (class class class)co 6690 ℤcz 11415 Basecbs 15904 .gcmg 17587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-cnv 5151 df-dm 5153 df-rn 5154 df-iota 5889 df-fv 5934 df-ov 6693 |
This theorem is referenced by: iscyggen2 18329 cyggenod 18332 cyggenod2 18333 cygznlem1 19963 cygznlem3 19966 |
Copyright terms: Public domain | W3C validator |