MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyggen Structured version   Visualization version   GIF version

Theorem iscyggen 18328
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
Assertion
Ref Expression
iscyggen (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem iscyggen
StepHypRef Expression
1 simpl 472 . . . . . 6 ((𝑥 = 𝑋𝑛 ∈ ℤ) → 𝑥 = 𝑋)
21oveq2d 6706 . . . . 5 ((𝑥 = 𝑋𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛 · 𝑋))
32mpteq2dva 4777 . . . 4 (𝑥 = 𝑋 → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))
43rneqd 5385 . . 3 (𝑥 = 𝑋 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))
54eqeq1d 2653 . 2 (𝑥 = 𝑋 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
6 iscyg3.e . 2 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
75, 6elrab2 3399 1 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wcel 2030  {crab 2945  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  cz 11415  Basecbs 15904  .gcmg 17587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-cnv 5151  df-dm 5153  df-rn 5154  df-iota 5889  df-fv 5934  df-ov 6693
This theorem is referenced by:  iscyggen2  18329  cyggenod  18332  cyggenod2  18333  cygznlem1  19963  cygznlem3  19966
  Copyright terms: Public domain W3C validator