![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscyg | Structured version Visualization version GIF version |
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
iscyg | ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6229 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
2 | iscyg.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | syl6eqr 2703 | . . 3 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
4 | fveq2 6229 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) | |
5 | iscyg.2 | . . . . . . . 8 ⊢ · = (.g‘𝐺) | |
6 | 4, 5 | syl6eqr 2703 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
7 | 6 | oveqd 6707 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑛(.g‘𝑔)𝑥) = (𝑛 · 𝑥)) |
8 | 7 | mpteq2dv 4778 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥))) |
9 | 8 | rneqd 5385 | . . . 4 ⊢ (𝑔 = 𝐺 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥))) |
10 | 9, 3 | eqeq12d 2666 | . . 3 ⊢ (𝑔 = 𝐺 → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
11 | 3, 10 | rexeqbidv 3183 | . 2 ⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔) ↔ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
12 | df-cyg 18326 | . 2 ⊢ CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔)} | |
13 | 11, 12 | elrab2 3399 | 1 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 ↦ cmpt 4762 ran crn 5144 ‘cfv 5926 (class class class)co 6690 ℤcz 11415 Basecbs 15904 Grpcgrp 17469 .gcmg 17587 CycGrpccyg 18325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-cnv 5151 df-dm 5153 df-rn 5154 df-iota 5889 df-fv 5934 df-ov 6693 df-cyg 18326 |
This theorem is referenced by: iscyg2 18330 iscyg3 18334 cyggrp 18337 cygctb 18339 ghmcyg 18343 ablfac2 18534 zncyg 19945 |
Copyright terms: Public domain | W3C validator |