![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem5 | Structured version Visualization version GIF version |
Description: Lemma for kur14 31505. Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | ⊢ 𝐽 ∈ Top |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
Ref | Expression |
---|---|
kur14lem5 | ⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
2 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
3 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | clsidm 21073 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴)) |
5 | 1, 2, 4 | mp2an 710 | . 2 ⊢ ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((cls‘𝐽)‘𝐴) |
6 | kur14lem.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
7 | 6 | fveq1i 6353 | . . 3 ⊢ (𝐾‘𝐴) = ((cls‘𝐽)‘𝐴) |
8 | 6, 7 | fveq12i 6357 | . 2 ⊢ (𝐾‘(𝐾‘𝐴)) = ((cls‘𝐽)‘((cls‘𝐽)‘𝐴)) |
9 | 5, 8, 7 | 3eqtr4i 2792 | 1 ⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ∪ cuni 4588 ‘cfv 6049 Topctop 20900 intcnt 21023 clsccl 21024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-top 20901 df-cld 21025 df-cls 21027 |
This theorem is referenced by: kur14lem6 31500 kur14lem7 31501 |
Copyright terms: Public domain | W3C validator |