Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnrot2 Structured version   Visualization version   GIF version

Theorem lnrot2 25419
 Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
lnrot2.1 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
lnrot2.2 (𝜑𝑌𝑍)
Assertion
Ref Expression
lnrot2 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem lnrot2
StepHypRef Expression
1 lnrot2.1 . 2 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
2 btwnlng1.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2621 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 btwnlng1.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 btwnlng1.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
6 btwnlng1.y . . . . . 6 (𝜑𝑌𝑃)
7 btwnlng1.x . . . . . 6 (𝜑𝑋𝑃)
8 btwnlng1.z . . . . . 6 (𝜑𝑍𝑃)
92, 3, 4, 5, 6, 7, 8tgbtwncomb 25284 . . . . 5 (𝜑 → (𝑋 ∈ (𝑌𝐼𝑍) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
10 biidd 252 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
112, 3, 4, 5, 6, 8, 7tgbtwncomb 25284 . . . . 5 (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
129, 10, 113orbi123d 1395 . . . 4 (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
13 3orrot 1042 . . . 4 ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
1412, 13syl6bbr 278 . . 3 (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
15 btwnlng1.l . . . 4 𝐿 = (LineG‘𝐺)
16 lnrot2.2 . . . 4 (𝜑𝑌𝑍)
172, 15, 4, 5, 6, 8, 16, 7tgellng 25348 . . 3 (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ (𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋))))
18 btwnlng1.d . . . 4 (𝜑𝑋𝑌)
192, 15, 4, 5, 7, 6, 18, 8tgellng 25348 . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
2014, 17, 193bitr4d 300 . 2 (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑍 ∈ (𝑋𝐿𝑌)))
211, 20mpbid 222 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ w3o 1035   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  distcds 15871  TarskiGcstrkg 25229  Itvcitv 25235  LineGclng 25236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-trkgc 25247  df-trkgb 25248  df-trkgcb 25249  df-trkg 25252 This theorem is referenced by:  coltr  25442  mideulem2  25526
 Copyright terms: Public domain W3C validator