MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmpropd Structured version   Visualization version   GIF version

Theorem lsmpropd 18798
Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015.) (Revised by AV, 25-Apr-2024.)
Hypotheses
Ref Expression
lsmpropd.b1 (𝜑𝐵 = (Base‘𝐾))
lsmpropd.b2 (𝜑𝐵 = (Base‘𝐿))
lsmpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lsmpropd.v1 (𝜑𝐾𝑉)
lsmpropd.v2 (𝜑𝐿𝑊)
Assertion
Ref Expression
lsmpropd (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem lsmpropd
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1198 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝜑)
2 simp12 1199 . . . . . . . . 9 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑡 ∈ 𝒫 𝐵)
32elpwid 4543 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑡𝐵)
4 simp2 1132 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑥𝑡)
53, 4sseldd 3961 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑥𝐵)
6 simp13 1200 . . . . . . . . 9 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑢 ∈ 𝒫 𝐵)
76elpwid 4543 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑢𝐵)
8 simp3 1133 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑦𝑢)
97, 8sseldd 3961 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑦𝐵)
10 lsmpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
111, 5, 9, 10syl12anc 834 . . . . . 6 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1211mpoeq3dva 7224 . . . . 5 ((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦)))
1312rneqd 5801 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦)))
1413mpoeq3dva 7224 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
15 lsmpropd.b1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
1615pweqd 4551 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐾))
17 mpoeq12 7220 . . . 4 ((𝒫 𝐵 = 𝒫 (Base‘𝐾) ∧ 𝒫 𝐵 = 𝒫 (Base‘𝐾)) → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
1816, 16, 17syl2anc 586 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
19 lsmpropd.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
2019pweqd 4551 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐿))
21 mpoeq12 7220 . . . 4 ((𝒫 𝐵 = 𝒫 (Base‘𝐿) ∧ 𝒫 𝐵 = 𝒫 (Base‘𝐿)) → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
2220, 20, 21syl2anc 586 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
2314, 18, 223eqtr3d 2863 . 2 (𝜑 → (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
24 lsmpropd.v1 . . 3 (𝜑𝐾𝑉)
25 eqid 2820 . . . 4 (Base‘𝐾) = (Base‘𝐾)
26 eqid 2820 . . . 4 (+g𝐾) = (+g𝐾)
27 eqid 2820 . . . 4 (LSSum‘𝐾) = (LSSum‘𝐾)
2825, 26, 27lsmfval 18758 . . 3 (𝐾𝑉 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
2924, 28syl 17 . 2 (𝜑 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
30 lsmpropd.v2 . . 3 (𝜑𝐿𝑊)
31 eqid 2820 . . . 4 (Base‘𝐿) = (Base‘𝐿)
32 eqid 2820 . . . 4 (+g𝐿) = (+g𝐿)
33 eqid 2820 . . . 4 (LSSum‘𝐿) = (LSSum‘𝐿)
3431, 32, 33lsmfval 18758 . . 3 (𝐿𝑊 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
3530, 34syl 17 . 2 (𝜑 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
3623, 29, 353eqtr4d 2865 1 (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  𝒫 cpw 4532  ran crn 5549  cfv 6348  (class class class)co 7149  cmpo 7151  Basecbs 16478  +gcplusg 16560  LSSumclsm 18754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-lsm 18756
This theorem is referenced by:  hlhillsm  39125
  Copyright terms: Public domain W3C validator