MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmfval Structured version   Visualization version   GIF version

Theorem lsmfval 18758
Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmfval (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
Distinct variable groups:   𝑢,𝑡,𝑥,𝑦, +   𝑡,𝐵,𝑢,𝑥,𝑦   𝑡,𝐺,𝑢,𝑥,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑢,𝑡)   𝑉(𝑥,𝑦,𝑢,𝑡)

Proof of Theorem lsmfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsmfval.s . 2 = (LSSum‘𝐺)
2 elex 3509 . . 3 (𝐺𝑉𝐺 ∈ V)
3 fveq2 6663 . . . . . . 7 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
4 lsmfval.v . . . . . . 7 𝐵 = (Base‘𝐺)
53, 4syl6eqr 2873 . . . . . 6 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
65pweqd 4551 . . . . 5 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵)
7 fveq2 6663 . . . . . . . . 9 (𝑤 = 𝐺 → (+g𝑤) = (+g𝐺))
8 lsmfval.a . . . . . . . . 9 + = (+g𝐺)
97, 8syl6eqr 2873 . . . . . . . 8 (𝑤 = 𝐺 → (+g𝑤) = + )
109oveqd 7166 . . . . . . 7 (𝑤 = 𝐺 → (𝑥(+g𝑤)𝑦) = (𝑥 + 𝑦))
1110mpoeq3dv 7226 . . . . . 6 (𝑤 = 𝐺 → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
1211rneqd 5801 . . . . 5 (𝑤 = 𝐺 → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
136, 6, 12mpoeq123dv 7222 . . . 4 (𝑤 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
14 df-lsm 18756 . . . 4 LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦))))
154fvexi 6677 . . . . . 6 𝐵 ∈ V
1615pwex 5274 . . . . 5 𝒫 𝐵 ∈ V
1716, 16mpoex 7770 . . . 4 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))) ∈ V
1813, 14, 17fvmpt 6761 . . 3 (𝐺 ∈ V → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
192, 18syl 17 . 2 (𝐺𝑉 → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
201, 19syl5eq 2867 1 (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  Vcvv 3491  𝒫 cpw 4532  ran crn 5549  cfv 6348  (class class class)co 7149  cmpo 7151  Basecbs 16478  +gcplusg 16560  LSSumclsm 18754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-lsm 18756
This theorem is referenced by:  lsmvalx  18759  oppglsm  18762  lsmpropd  18798  rlmlsm  19974
  Copyright terms: Public domain W3C validator