![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmfun | Structured version Visualization version GIF version |
Description: A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
Ref | Expression |
---|---|
mbfmfun.1 | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Ref | Expression |
---|---|
mbfmfun | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmfun.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | |
2 | elunirnmbfm 30624 | . . 3 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) | |
3 | 2 | biimpi 206 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM → ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
4 | elmapfun 8047 | . . . . 5 ⊢ (𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) → Fun 𝐹) | |
5 | 4 | adantr 472 | . . . 4 ⊢ ((𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠) → Fun 𝐹) |
6 | 5 | rexlimivw 3167 | . . 3 ⊢ (∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠) → Fun 𝐹) |
7 | 6 | rexlimivw 3167 | . 2 ⊢ (∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠) → Fun 𝐹) |
8 | 1, 3, 7 | 3syl 18 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ∪ cuni 4588 ◡ccnv 5265 ran crn 5267 “ cima 5269 Fun wfun 6043 (class class class)co 6813 ↑𝑚 cmap 8023 sigAlgebracsiga 30479 MblFnMcmbfm 30621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-map 8025 df-mbfm 30622 |
This theorem is referenced by: orvcval4 30831 |
Copyright terms: Public domain | W3C validator |