MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapfun Structured version   Visualization version   GIF version

Theorem elmapfun 7745
Description: A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Assertion
Ref Expression
elmapfun (𝐴 ∈ (𝐵𝑚 𝐶) → Fun 𝐴)

Proof of Theorem elmapfun
StepHypRef Expression
1 elmapi 7743 . 2 (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)
2 ffun 5947 . 2 (𝐴:𝐶𝐵 → Fun 𝐴)
31, 2syl 17 1 (𝐴 ∈ (𝐵𝑚 𝐶) → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  Fun wfun 5784  wf 5786  (class class class)co 6527  𝑚 cmap 7722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-map 7724
This theorem is referenced by:  fsfnn0gsumfsffz  18151  ltbwe  19242  frlmbas  19866  islindf4  19944  mbfmfun  29437  eulerpartgbij  29555  uncf  32352  pwfi2f1o  36478  hoicvr  39232  ovnovollem1  39340  ovnovollem2  39341  domnmsuppn0  41936  rmsuppss  41937  mndpsuppss  41938  scmsuppss  41939  lincext2  42030
  Copyright terms: Public domain W3C validator