MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirfv Structured version   Visualization version   GIF version

Theorem mirfv 26423
Description: Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirfv (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐺   𝑧,𝑀   𝑧,𝐼   𝑧,𝑃   𝜑,𝑧   𝑧,
Allowed substitution hints:   𝑆(𝑧)   𝐿(𝑧)

Proof of Theorem mirfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mirfv.m . . 3 𝑀 = (𝑆𝐴)
2 mirval.p . . . 4 𝑃 = (Base‘𝐺)
3 mirval.d . . . 4 = (dist‘𝐺)
4 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
5 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
6 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
7 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
8 mirval.a . . . 4 (𝜑𝐴𝑃)
92, 3, 4, 5, 6, 7, 8mirval 26422 . . 3 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
101, 9syl5eq 2867 . 2 (𝜑𝑀 = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
11 simplr 767 . . . . . 6 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → 𝑦 = 𝐵)
1211oveq2d 7153 . . . . 5 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝐴 𝑦) = (𝐴 𝐵))
1312eqeq2d 2831 . . . 4 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → ((𝐴 𝑧) = (𝐴 𝑦) ↔ (𝐴 𝑧) = (𝐴 𝐵)))
1411oveq2d 7153 . . . . 5 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝑧𝐼𝑦) = (𝑧𝐼𝐵))
1514eleq2d 2896 . . . 4 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝐴 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝐵)))
1613, 15anbi12d 632 . . 3 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
1716riotabidva 7114 . 2 ((𝜑𝑦 = 𝐵) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
18 mirfv.b . 2 (𝜑𝐵𝑃)
19 riotaex 7099 . . 3 (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V
2019a1i 11 . 2 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V)
2110, 17, 18, 20fvmptd 6756 1 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3481  cmpt 5127  cfv 6336  crio 7094  (class class class)co 7137  Basecbs 16461  distcds 16552  TarskiGcstrkg 26197  Itvcitv 26203  LineGclng 26204  pInvGcmir 26419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pr 5311
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7095  df-ov 7140  df-mir 26420
This theorem is referenced by:  mircgr  26424  mirbtwn  26425  ismir  26426  mirf  26427  mireq  26432
  Copyright terms: Public domain W3C validator