![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moabex | Structured version Visualization version GIF version |
Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.) |
Ref | Expression |
---|---|
moabex | ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo2v 2614 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
2 | abss 3812 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 ∈ {𝑦})) | |
3 | velsn 4337 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
4 | 3 | imbi2i 325 | . . . . . 6 ⊢ ((𝜑 → 𝑥 ∈ {𝑦}) ↔ (𝜑 → 𝑥 = 𝑦)) |
5 | 4 | albii 1896 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
6 | 2, 5 | bitri 264 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
7 | snex 5057 | . . . . 5 ⊢ {𝑦} ∈ V | |
8 | 7 | ssex 4954 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
9 | 6, 8 | sylbir 225 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
10 | 9 | exlimiv 2007 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
11 | 1, 10 | sylbi 207 | 1 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1630 ∃wex 1853 ∈ wcel 2139 ∃*wmo 2608 {cab 2746 Vcvv 3340 ⊆ wss 3715 {csn 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-sn 4322 df-pr 4324 |
This theorem is referenced by: rmorabex 5077 euabex 5078 |
Copyright terms: Public domain | W3C validator |