Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0 Structured version   Visualization version   GIF version

Theorem satfv0 32605
Description: The value of the satisfaction predicate as function over wff codes at . (Contributed by AV, 8-Oct-2023.)
Hypothesis
Ref Expression
satfv0.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfv0 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
Distinct variable groups:   𝐸,𝑎,𝑖,𝑗,𝑥,𝑦   𝑀,𝑎,𝑖,𝑗,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑖,𝑗,𝑎)   𝑉(𝑥,𝑦,𝑖,𝑗,𝑎)   𝑊(𝑥,𝑦,𝑖,𝑗,𝑎)

Proof of Theorem satfv0
Dummy variables 𝑓 𝑚 𝑛 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7601 . . . 4 ∅ ∈ ω
2 elelsuc 6263 . . . 4 (∅ ∈ ω → ∅ ∈ suc ω)
31, 2mp1i 13 . . 3 ((𝑀𝑉𝐸𝑊) → ∅ ∈ suc ω)
4 satfv0.s . . . 4 𝑆 = (𝑀 Sat 𝐸)
54satfvsucom 32604 . . 3 ((𝑀𝑉𝐸𝑊 ∧ ∅ ∈ suc ω) → (𝑆‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅))
63, 5mpd3an3 1458 . 2 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅))
7 goelel3xp 32595 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) ∈ (ω × (ω × ω)))
8 eleq1 2900 . . . . . . . . . 10 (𝑥 = (𝑖𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖𝑔𝑗) ∈ (ω × (ω × ω))))
97, 8syl5ibrcom 249 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))))
109adantrd 494 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑥 ∈ (ω × (ω × ω))))
1110pm4.71d 564 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω)))))
12112rexbiia 3298 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))))
13 r19.41vv 3349 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))))
14 ancom 463 . . . . . 6 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ 𝑥 ∈ (ω × (ω × ω))) ↔ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
1512, 13, 143bitri 299 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
1615opabbii 5133 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))}
17 omex 9106 . . . . 5 ω ∈ V
1817, 17xpex 7476 . . . . 5 (ω × ω) ∈ V
19 xpexg 7473 . . . . . 6 ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V)
20 oveq1 7163 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → (𝑖𝑔𝑗) = (𝑚𝑔𝑗))
2120eqeq2d 2832 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑚𝑔𝑗)))
22 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (𝑎𝑖) = (𝑎𝑚))
2322breq1d 5076 . . . . . . . . . . . . . . 15 (𝑖 = 𝑚 → ((𝑎𝑖)𝐸(𝑎𝑗) ↔ (𝑎𝑚)𝐸(𝑎𝑗)))
2423rabbidv 3480 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)})
2524eqeq2d 2832 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)}))
2621, 25anbi12d 632 . . . . . . . . . . . 12 (𝑖 = 𝑚 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑚𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)})))
27 oveq2 7164 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → (𝑚𝑔𝑗) = (𝑚𝑔𝑛))
2827eqeq2d 2832 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (𝑥 = (𝑚𝑔𝑗) ↔ 𝑥 = (𝑚𝑔𝑛)))
29 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → (𝑎𝑗) = (𝑎𝑛))
3029breq2d 5078 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛 → ((𝑎𝑚)𝐸(𝑎𝑗) ↔ (𝑎𝑚)𝐸(𝑎𝑛)))
3130rabbidv 3480 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)})
3231eqeq2d 2832 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)} ↔ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}))
3328, 32anbi12d 632 . . . . . . . . . . . 12 (𝑗 = 𝑛 → ((𝑥 = (𝑚𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)})))
3426, 33cbvrex2vw 3462 . . . . . . . . . . 11 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}))
35 eqeq1 2825 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑖𝑔𝑗) → (𝑥 = (𝑚𝑔𝑛) ↔ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)))
3635adantl 484 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑥 = (𝑚𝑔𝑛) ↔ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)))
37 goeleq12bg 32596 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) ↔ (𝑖 = 𝑚𝑗 = 𝑛)))
3822eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑚 → (𝑎𝑚) = (𝑎𝑖))
3929eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑛 → (𝑎𝑛) = (𝑎𝑗))
4038, 39breqan12d 5082 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 = 𝑚𝑗 = 𝑛) → ((𝑎𝑚)𝐸(𝑎𝑛) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
4140rabbidv 3480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 = 𝑚𝑗 = 𝑛) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
4237, 41syl6bi 255 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4342imp 409 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
44 eqeq12 2835 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → (𝑦 = 𝑧 ↔ {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4543, 44syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . 20 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ (𝑖𝑔𝑗) = (𝑚𝑔𝑛)) → ((𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
4645exp4b 433 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4746adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → ((𝑖𝑔𝑗) = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4836, 47sylbid 242 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑥 = (𝑚𝑔𝑛) → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)} → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧))))
4948impd 413 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → 𝑦 = 𝑧)))
5049com23 86 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) ∧ 𝑥 = (𝑖𝑔𝑗)) → (𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5150expimpd 456 . . . . . . . . . . . . . 14 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5251rexlimdvva 3294 . . . . . . . . . . . . 13 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → 𝑦 = 𝑧)))
5352com23 86 . . . . . . . . . . . 12 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → ((𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧)))
5453rexlimivv 3292 . . . . . . . . . . 11 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑥 = (𝑚𝑔𝑛) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑚)𝐸(𝑎𝑛)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
5534, 54sylbi 219 . . . . . . . . . 10 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → 𝑦 = 𝑧))
5655imp 409 . . . . . . . . 9 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧)
5756gen2 1797 . . . . . . . 8 𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧)
58 eqeq1 2825 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
5958anbi2d 630 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
60592rexbidv 3300 . . . . . . . . 9 (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
6160mo4 2650 . . . . . . . 8 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∀𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})) → 𝑦 = 𝑧))
6257, 61mpbir 233 . . . . . . 7 ∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
63 moabex 5351 . . . . . . 7 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V)
6462, 63mp1i 13 . . . . . 6 (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ 𝑥 ∈ (ω × (ω × ω))) → {𝑦 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V)
6519, 64opabex3d 7666 . . . . 5 ((ω ∈ V ∧ (ω × ω) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))} ∈ V)
6617, 18, 65mp2an 690 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (ω × (ω × ω)) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))} ∈ V
6716, 66eqeltri 2909 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ∈ V
6867rdg0 8057 . 2 (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}
696, 68syl6eq 2872 1 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  wal 1535   = wceq 1537  wcel 2114  ∃*wmo 2620  {cab 2799  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  cin 3935  c0 4291  {csn 4567  cop 4573   class class class wbr 5066  {copab 5128  cmpt 5146   × cxp 5553  cres 5557  suc csuc 6193  cfv 6355  (class class class)co 7156  ωcom 7580  1st c1st 7687  2nd c2nd 7688  reccrdg 8045  m cmap 8406  𝑔cgoe 32580  𝑔cgna 32581  𝑔cgol 32582   Sat csat 32583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-goel 32587  df-sat 32590
This theorem is referenced by:  satfv1  32610  satfrel  32614  satfdm  32616  satfrnmapom  32617  satfv0fun  32618  satfv0fvfmla0  32660
  Copyright terms: Public domain W3C validator