MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopoveqd Structured version   Visualization version   GIF version

Theorem mpoxopoveqd 7887
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypotheses
Ref Expression
mpoxopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
mpoxopoveqd.1 (𝜓 → (𝑉𝑋𝑊𝑌))
mpoxopoveqd.2 ((𝜓 ∧ ¬ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅)
Assertion
Ref Expression
mpoxopoveqd (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝜓(𝑥,𝑦,𝑛)   𝐹(𝑦,𝑛)

Proof of Theorem mpoxopoveqd
StepHypRef Expression
1 mpoxopoveq.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21mpoxopoveq 7885 . . . 4 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
32ex 415 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
4 mpoxopoveqd.1 . . 3 (𝜓 → (𝑉𝑋𝑊𝑌))
53, 4syl11 33 . 2 (𝐾𝑉 → (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
6 df-nel 3124 . . . . . 6 (𝐾𝑉 ↔ ¬ 𝐾𝑉)
71mpoxopynvov0 7884 . . . . . 6 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
86, 7sylbir 237 . . . . 5 𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
98adantr 483 . . . 4 ((¬ 𝐾𝑉𝜓) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
10 mpoxopoveqd.2 . . . . . 6 ((𝜓 ∧ ¬ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅)
1110eqcomd 2827 . . . . 5 ((𝜓 ∧ ¬ 𝐾𝑉) → ∅ = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
1211ancoms 461 . . . 4 ((¬ 𝐾𝑉𝜓) → ∅ = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
139, 12eqtrd 2856 . . 3 ((¬ 𝐾𝑉𝜓) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
1413ex 415 . 2 𝐾𝑉 → (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
155, 14pm2.61i 184 1 (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wnel 3123  {crab 3142  Vcvv 3494  [wsbc 3772  c0 4291  cop 4573  cfv 6355  (class class class)co 7156  cmpo 7158  1st c1st 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator