MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreunirn Structured version   Visualization version   GIF version

Theorem mreunirn 16872
Description: Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreunirn (𝐶 ran Moore ↔ 𝐶 ∈ (Moore‘ 𝐶))

Proof of Theorem mreunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnmre 16862 . . . 4 Moore Fn V
2 fnunirn 7012 . . . 4 (Moore Fn V → (𝐶 ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥)))
31, 2ax-mp 5 . . 3 (𝐶 ran Moore ↔ ∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥))
4 mreuni 16871 . . . . . . 7 (𝐶 ∈ (Moore‘𝑥) → 𝐶 = 𝑥)
54fveq2d 6674 . . . . . 6 (𝐶 ∈ (Moore‘𝑥) → (Moore‘ 𝐶) = (Moore‘𝑥))
65eleq2d 2898 . . . . 5 (𝐶 ∈ (Moore‘𝑥) → (𝐶 ∈ (Moore‘ 𝐶) ↔ 𝐶 ∈ (Moore‘𝑥)))
76ibir 270 . . . 4 (𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘ 𝐶))
87rexlimivw 3282 . . 3 (∃𝑥 ∈ V 𝐶 ∈ (Moore‘𝑥) → 𝐶 ∈ (Moore‘ 𝐶))
93, 8sylbi 219 . 2 (𝐶 ran Moore → 𝐶 ∈ (Moore‘ 𝐶))
10 fvssunirn 6699 . . 3 (Moore‘ 𝐶) ⊆ ran Moore
1110sseli 3963 . 2 (𝐶 ∈ (Moore‘ 𝐶) → 𝐶 ran Moore)
129, 11impbii 211 1 (𝐶 ran Moore ↔ 𝐶 ∈ (Moore‘ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wcel 2114  wrex 3139  Vcvv 3494   cuni 4838  ran crn 5556   Fn wfn 6350  cfv 6355  Moorecmre 16853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363  df-mre 16857
This theorem is referenced by:  fnmrc  16878  mrcfval  16879
  Copyright terms: Public domain W3C validator