MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natixp Structured version   Visualization version   GIF version

Theorem natixp 17222
Description: A natural transformation is a function from the objects of 𝐶 to homomorphisms from 𝐹(𝑥) to 𝐺(𝑥). (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
natixp.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
natixp (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐶   𝑥,𝐾   𝜑,𝑥   𝑥,𝐷   𝑥,𝐿   𝑥,𝐵   𝑥,𝐽
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem natixp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natixp.2 . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
2 natrcl.1 . . . 4 𝑁 = (𝐶 Nat 𝐷)
3 natixp.b . . . 4 𝐵 = (Base‘𝐶)
4 eqid 2821 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 natixp.j . . . 4 𝐽 = (Hom ‘𝐷)
6 eqid 2821 . . . 4 (comp‘𝐷) = (comp‘𝐷)
72natrcl 17220 . . . . . . 7 (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
81, 7syl 17 . . . . . 6 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
98simpld 497 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
10 df-br 5067 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylibr 236 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
128simprd 498 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
13 df-br 5067 . . . . 5 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
1412, 13sylibr 236 . . . 4 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
152, 3, 4, 5, 6, 11, 14isnat 17217 . . 3 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐾𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹𝑥), (𝐾𝑥)⟩(comp‘𝐷)(𝐾𝑦))(𝐴𝑥)))))
161, 15mpbid 234 . 2 (𝜑 → (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐾𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹𝑥), (𝐾𝑥)⟩(comp‘𝐷)(𝐾𝑦))(𝐴𝑥))))
1716simpld 497 1 (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  cop 4573   class class class wbr 5066  cfv 6355  (class class class)co 7156  Xcixp 8461  Basecbs 16483  Hom chom 16576  compcco 16577   Func cfunc 17124   Nat cnat 17211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-ixp 8462  df-func 17128  df-nat 17213
This theorem is referenced by:  natcl  17223  natfn  17224
  Copyright terms: Public domain W3C validator