MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natixp Structured version   Visualization version   GIF version

Theorem natixp 16377
Description: A natural transformation is a function from the objects of 𝐶 to homomorphisms from 𝐹(𝑥) to 𝐺(𝑥). (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
natixp.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
natixp (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐶   𝑥,𝐾   𝜑,𝑥   𝑥,𝐷   𝑥,𝐿   𝑥,𝐵   𝑥,𝐽
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem natixp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natixp.2 . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
2 natrcl.1 . . . 4 𝑁 = (𝐶 Nat 𝐷)
3 natixp.b . . . 4 𝐵 = (Base‘𝐶)
4 eqid 2605 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 natixp.j . . . 4 𝐽 = (Hom ‘𝐷)
6 eqid 2605 . . . 4 (comp‘𝐷) = (comp‘𝐷)
72natrcl 16375 . . . . . . 7 (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
81, 7syl 17 . . . . . 6 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
98simpld 473 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
10 df-br 4574 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylibr 222 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
128simprd 477 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
13 df-br 4574 . . . . 5 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
1412, 13sylibr 222 . . . 4 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
152, 3, 4, 5, 6, 11, 14isnat 16372 . . 3 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐾𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹𝑥), (𝐾𝑥)⟩(comp‘𝐷)(𝐾𝑦))(𝐴𝑥)))))
161, 15mpbid 220 . 2 (𝜑 → (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐾𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹𝑥), (𝐾𝑥)⟩(comp‘𝐷)(𝐾𝑦))(𝐴𝑥))))
1716simpld 473 1 (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  wral 2891  cop 4126   class class class wbr 4573  cfv 5786  (class class class)co 6523  Xcixp 7767  Basecbs 15637  Hom chom 15721  compcco 15722   Func cfunc 16279   Nat cnat 16366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-1st 7032  df-2nd 7033  df-ixp 7768  df-func 16283  df-nat 16368
This theorem is referenced by:  natcl  16378  natfn  16379
  Copyright terms: Public domain W3C validator